Производная корень из Х – формулы и примеры вычислений

Производная степенной функции (степени и корни)

Основные формулы

Производная от x в степени a равна a , умноженному на x в степени a минус один:
(1) .

Производная от корня степени n из x в степени m равна:
(2) .

Вывод формулы производной степенной функции

Случай x > 0

Рассмотрим степенную функцию от переменной x с показателем степени a :
(3) .
Здесь a является произвольным действительным числом. Сначала рассмотрим случай .

Чтобы найти производную функции (3), воспользуемся свойствами степенной функции и преобразуем ее к следующему виду:
.

Вывод формулы производной от корня степени n из x в степени m

Теперь рассмотрим функцию, являющуюся корнем следующего вида:
(4) .

Чтобы найти производную, преобразуем корень к степенной функции:
.
Сравнивая с формулой (3) мы видим, что
.
Тогда
.

По формуле (1) находим производную:
(1) ;
;
(2) .

На практике нет необходимости запоминать формулу (2). Гораздо удобнее сначала преобразовать корни к степенным функциям, а затем находить их производные, применяя формулу (1) (см. примеры в конце страницы).

Случай x = 0

Если , то степенная функция определена и при значении переменной x = 0 . Найдем производную функции (3) при x = 0 . Для этого воспользуемся определением производной:
.

Подставим x = 0 :
.
При этом под производной мы понимаем правосторонний предел, для которого .

Итак, мы нашли:
.
Отсюда видно, что при , .
При , .
При , .
Этот результат получается и по формуле (1):
(1) .
Поэтому формула (1) справедлива и при x = 0 .

Случай x .
При некоторых значениях постоянной a , она определена и при отрицательных значениях переменной x . А именно, пусть a будет рациональным числом. Тогда его можно представить в виде несократимой дроби:
,
где m и n – целые числа, не имеющие общего делителя.

Если n нечетное, то степенная функция определена и при отрицательных значениях переменной x . Например, при n = 3 и m = 1 мы имеем кубический корень из x :
.
Он определен и при отрицательных значениях переменной x .

Найдем производную степенной функции (3) при и при рациональных значениях постоянной a , для которых она определена. Для этого представим x в следующем виде:
.
Тогда ,
.
Находим производную, вынося постоянную за знак производной и применяя правило дифференцирования сложной функции:

.
Здесь . Но
.
Поскольку , то
.
Тогда
.
То есть формула (1) справедлива и при :
(1) .

Производные высших порядков

Теперь найдем производные высших порядков от степенной функции
(3) .
Производную первого порядка мы уже нашли:
.

Вынося постоянную a за знак производной, находим производную второго порядка:
.
Аналогичным образом находим производные третьего и четвертого порядков:
;

.

Отсюда видно, что производная произвольного n-го порядка имеет следующий вид:
.

Заметим, что если a является натуральным числом, , то n -я производная является постоянной:
.
Тогда все последующие производные равны нулю:
,
при .

Примеры вычисления производных

Пример

Найдите производную функции:
.

Преобразуем корни к степеням:
;
.
Тогда исходная функция приобретает вид:
.

Находим производные степеней:
;
.
Производная постоянной равна нулю:
.

Еще примеры

Найти производные следующих функций, зависящих от переменной x :
Решение > > > Решение > > > Решение > > > Решение > > > Решение > > >

Найти производную шестого порядка следующей функции:
.
Решение > > >

Автор: Олег Одинцов . Опубликовано: 09-04-2017

Правила вычисления производных. Таблица производных часто встречающихся функций. Таблица производных сложных функций

Правила вычисления производных
Таблица производных часто встречающихся функций
Таблица производных сложных функций

Правила вычисления производных

Вычисление производных основано на применении следующих правил, которые мы будем использовать без доказательств, поскольку доказательства выходят за рамки школьного курса математики.

Правило 1 (производная от произведения числа на функцию) . Справедливо равенство

где c – любое число.

Другими словами, производная от произведения числа на функцию равна произведению этого числа на производную функции.

Правило 2 (производная суммы функций) . Производная суммы функций вычисляется по формуле

то есть производная от суммы функций равна сумме производных этих функций.

Правило 3 (производная разности функций) . Производная разности функций вычисляется по формуле

то есть производная от разности функций равна разности производных этих функций.

Правило 4 (производная произведения двух функций) . Производная произведения двух функций вычисляется по формуле

Другими словами, производная от произведения двух функций равна производной от первой функции, умноженной на вторую функцию, плюс первая функция, умноженная на производную от второй функции.

Правило 5 (производная частного двух функций) . Производная от дроби (частного двух функций) вычисляется по формуле

Определение . Рассмотрим функции f (x) и g (x) . Сложной функцией или «функцией от функции» называют функцию вида

При этом функцию f (x) называют внешней функцией, а функцию g (x) – внутренней функцией.

Правило 6 (производная сложной функции) . Производная сложной функции вычисляется по формуле

Другими словами, для того, чтобы найти производную от сложной функции f (g (x)) в точке x нужно умножить производную внешней функции, вычисленную в точке g (x) , на производную внутренней функции, вычисленную в точке x .

Таблица производных часто встречающихся функций

В следующей таблице приведены формулы для производных от степенных, показательных (экспоненциальных), логарифмических, тригонометрических и обратных тригонометрических функций. Доказательство большинства их этих формул выходит за рамки школьного курса математики.

где c – любое число

где c – любое число

где a – любое положительное число, не равное 1

где a – любое положительное число, не равное 1

y = arcsin x ,

y = arccos x ,

где c – любое число

Формула для производной:

где c – любое число

Формула для производной:

Формула для производной:

где a – любое положительное число, не равное 1

Формула для производной:

Формула для производной:

где a – любое положительное число, не равное 1

Формула для производной:

Формула для производной:

Формула для производной:

Формула для производной:

,

Формула для производной:

y = arcsin x ,

Формула для производной:

y = arccos x ,

Формула для производной:

Формула для производной:

Формула для производной:

Таблица производных сложных функций

В отдельных строках (с желтым фоном) приведены формулы для производных сложных функций в случае, когда внутренняя функция является линейной функцией и имеет вид f (x) = kx + b , где k и b – любые числа, .

где c – любое число.

где c – любое число.

где a – любое положительное число, не равное 1

где a – любое положительное число, не равное 1

где a – любое положительное число, не равное 1

где a – любое положительное число, не равное 1

где

где

где

где

Алгебра

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Производные некоторых элементарных функций

Ранее мы для вычисления производных использовали ее определение. То есть каждый раз мы давали функции некоторое приращение ∆х, потом находили соответствующую ему величину ∆у, далее составляли отношение ∆у/∆х, после чего находили предел этого отношения при ∆х →0. Выполнение такого алгоритма довольно трудоемко. Поэтому на практике используются специальные формулы для вычисления производных.

Нам известно несколько основных функций, которые в математике чаще называют элементарными. Например, элементарными являются линейная функция, степенная, показательная, логарифмическая. Также существует несколько различных тригонометрических функций (синус, косинус, тангенс), которые тоже считаются элементарными. Попытаемся вычислить для них производные.

Начнем с линейной функции. В общем случае она выглядит так:

где k и b – некоторые постоянные числа.

Выберем произвольную точку х0 и дадим ей приращение ∆х, в результате чего мы придем в новую точку (х0 + ∆х). Вычислим значения линейной функции в этих двух точках:

Теперь мы можем найти приращение функции ∆у:

Находим отношение ∆у/∆х:

Получилось, что это отношение не зависит ни от приращения ∆х, ни от выбора исходной точки х0. Естественно, что предел этого отношения при ∆х→0 (то есть производная) также будет равен k:

Задание. Вычислите производную функции у = 4х + 9.

Обратите внимание, что в рассмотренном примере запись у′ = 4 означает функцию. Просто при любом значении х она принимает одно и то же значение, равное 4. График производной функции будет выглядеть так:

Рассмотрим два особых частных случая линейной функции. Пусть k = 1 и b = 0, тогда она примет вид у = х. Её производная тогда будет равна 1:

Теперь предположим, что коэффициент k = 0. Тогда функция примет вид

где С – некоторое постоянное число, то есть константа (большая буква Св таких случаях используется из-за латинского термина constanta). Производная такой функции будет равна нулю:

Задание. Найдите вторую производную функции у = 9х + 2.

Решение. Сначала вычислим первую производную:

Очень легко объяснить, почему производная константы равна нулю. Представим себе, что закон движения некоторого тела выглядит как s(t) = C, например, s(t) = 5. Это значит, что тело в любой момент времени находится в точке, находящейся в 5 метрах от какого-то начала отсчета. То есть тело находится в одной и той же точке, а это значит, что оно не двигается. Тогда его скорость равна нулю. Но производная – это и есть скорость, значит, она также равна нулю.

Далее вычислим производную для функции у = 1/х. Выберем некоторую точку х0 и дадим ей приращение ∆х. В результате имеем две точки с координатами х0 и (х0 + ∆х). Вычислим значение функции в каждой из них:

Осталось найти предел данного отношения при ∆х→0. Ясно, что при этом множитель х0 + ∆х будет стремится к х0, то есть

Задание. Вычислите производные функции

Обратите внимание, что производная функции у = 1/х оказывается отрицательной при любом значении х (кроме нуля, для которого производную посчитать нельзя, так как получится деление на ноль). Это должно означать, что функция убывает в каждой своей точке, а любая касательная к ней образует с осью Ох тупой угол наклона. И это действительно так:

Мы разобрали несколько простейших примеров того, как находить формулы производных. Для этого используется понятие предела функции. Для вывода всех подобных формул требуется хорошо знать тему вычисления пределов, которая не изучается детально в школе. Поэтому мы просто дадим следующие формулы без доказательств.

Начнем со степенной функции у = х n , где n– некоторое постоянное число. Её производная вычисляется по формуле:

Приведем примеры использования этой формулы:

Задание. Найдите производную функции у = х 6 в точке х0 = 10.

Задание. Движение самолета при разгоне описывается законом движения s(t) = t 3 . Найдите его скорость через 5 секунд после начала разгона.

Решение. Скорость самолета в любой момент времени равна производнойs′(t). Найдем её:

Заметим, что используемая нами формула работает и в том случае, если показатель степени является отрицательным или дробным числом. Действительно, ранее мы вывели формулу

Задание. Вычислите производную функции

Задание. Определите, в какой точке необходимо провести касательную к графику функции

чтобы она образовывала с осью Ох угол в 45°?

Решение. Тангенс угла наклона касательной равен производной. Известно, что tg 45° = 1. Значит, нам надо найти такую точку х0, в которой значение производной квадратного корня будет равно единице. Производная вычисляется по формуле:

Далее изучим формулы производных для тригонометрических функций. Они выглядят так:

Рассмотрим несколько примеров использования этих формул.

Задание. Найдите производную функции у = cosx в точке х0 = π.

Решение. Мы знаем, что

Задание. Найдите угол наклона касательной, проведенной к графику у = sinx в начале координат.

Решение. Производная синуса вычисляется по формуле:

Получается, что тангенс угла наклона также равен единице. Это значит, что сам угол равен 45°. Построение показывает, что это действительно так:

Задание. Найдите производную функции у = tgx в точке х0 = π/6.

Решение. Для тангенса используется формула:

Далее рассмотрим показательную и логарифмическую функцию. Их производные рассчитываются по следующим формулам:

Обратите внимание, что в этих формулах появился натуральный логарифм, то есть логарифм, основанием которого является число е. Именно из-за наличия натурального логарифма в формулах дифференцирования он играет особо важную роль в математике и имеет отдельное обозначение. Вычислим несколько производных с помощью приведенных формул:

Напомним, что справедлива формула

Стоит обратить внимание, что функции у = е х при дифференцировании не меняется. Эта особенность функции также имеет огромное значение в математическом анализе.

Задание. Найдите угол наклона касательных, проведенных к графику у = е х в точке (0; 1) и к графику у = lnx в точке (1; 0).

Решение. Используем формулы производных:

Получили, что тангенс наклона касательной равен 1. Из этого следует, что угол наклона касательной равен 45°. Далее найдем производную натурального логарифма при х = 1:

Производная снова равна 1, значит, угол наклона также составит 45°, что подтверждается рисунком:

Задание. Вычислите производную функции у = 2 х при х0 = 3.

Решение. Используем формулу

Сведем использованные нами равенства в одну таблицу производных основных функций:

Основные правила дифференцирования

До этого мы рассматривали довольно простые, то есть стандартные функции, для каждой из которых производную можно узнать из справочника или таблицы. Но что делать, если нам потребовалось продифференцировать функцию, которая состоит из нескольких основных? Например, что делать с функциями у = 5х 2 + 6х – 3 или у = x•sinx?

Все более сложные функции можно получить из нескольких простых, комбинируя их. Так, функция у = х 3 + х 2 получается сложением функций у = х 3 и у = х 2 , а функция у = (lnx)•(cosx) – произведением функций у = lnx и у = сosx.

Есть несколько правил, которые позволяют находить производные в таких случаях. Мы не будем их доказывать, а просто дадим их формулировки. Также будем нумеровать правила. Первое из них помогает находить производную сумму функций.

В данном случае u и v – это просто обозначение каких-то произвольных функций. Рассмотрим пример. Пусть надо найти производную функции

Правило работает и в том случае, если сумма представляет собой сумму не двух, а большего числа слагаемых:

Следующее правило позволяет выносить постоянный множитель за знак производной:

Покажем использование этого правила:

Действительно, зная эти формулы и первые два правила вычисления производных, мы можем записать, что

Задание. Вычислите значение производной функции у = 9х 3 + 7х 2 – 25х + 7 в точке х0 = 1.

Решение. Пользуясь правилами дифференцирования, находим производную:

Несколько сложнее обстоит дело с дифференцированием функций, получающихся при перемножении простых функций. В таких случаях используется следующее правило:

Предположим, надо найти производную для функции у = х 2 •sinx. Её можно представить как произведение u•v, где

Примечание. В последнем случае мы в конце примера использовали формулу косинуса двойного угла:

Заметим, что иногда одно и то же задание с производной можно решить по-разному, используя или не используя правило для вычисления производной произведения функций.

Задание. Найдите производную функции у = х 2 •(3х + х 3 ). Вычислите ее значение при х = 1.

Решение. Функция у представляет собой произведение более простых функций u•v, где

Задание. Продифференцируйте функцию

Решение. Здесь перед нами функция, которая представляет собой произведение сразу трех множителей. Что делать в таком случае? Надо всего лишь добавить скобки и их помощью оставить только два множителя (один их них окажется «сложным»):

Довольно сложно выглядит формула для поиска производной дроби:

Например, пусть надо найти производную функции

С помощью данного правила можно доказать некоторые равенства. Так, ранее мы уже записали (без доказательства) формулы производных тригонометрических функций:

Оказывается, формула для тангенса может быть выведена из формул для синуса и косинуса. Действительно, тангенс можно записать в виде дроби:

Задание. Найдите, в каких точках надо провести касательную к графику дробно-линейной функции

чтобы эта касательная образовала с осью Ох угол в 135°.

Решение. Угол будет равен 135° только тогда, когда значение производной будет равно (– 1) (так как tg 135° = – 1). Поэтому сначала найдем производную. В данном случае следует использовать правило 4, так как функция у явно записана как дробь:

Получили два значения х. Построив график и проведя касательные, мы убедимся, что они действительно образуют с осью Ох угол 135°:

Заметим, что иногда можно избавиться от необходимости использовать правило 4, если дифференцируемую функцию можно преобразовать. При этом часто помогает использование отрицательных степеней. Пусть надо продифференцировать функцию

Напрашивается решение использовать правило 4.И такой путь позволит получить правильное решение, хотя и будет несколько трудоемким. Однако можно преобразовать функцию:

У нас получилось произведение, а потому можно использовать правило 3, которое представляется более простым:

Производная сложной функции

«Сконструировать» громоздкую функцию из нескольких простых можно не только с помощью арифметических действий. Например, возьмем функции

В обоих случаях мы получили некоторую функцию, продифференцировать которую с помощью уже известных нам правил не получится. Функции, сконструированные таким образом, называются сложными. Есть универсальная формула, позволяющая находить производную сложной функции:

Посмотрим, как пользоваться эти правилом. Пусть надо вычислить производную функции

Она сконструирована из функции у = e x и у = sinx, причем вторая подставлена в первую. Это значит, что первую можно обозначить буквой u, а вторую – буквой v (если использовать обозначения в правиле 5):

Задание. Найдите у′, если у = sin 2x.

Решение. На этот раз в качестве исходной функции выступает

Убедиться в справедливости правила 5 можно на примере функции

Её можно продифференцировать двумя разными способами. Сначала попробуем просто избавиться от квадрата в исходной функции, используя формулу квадрата суммы:

В результате оба способа вычисления производной дали одинаковый ответ.

Задание. Найдите производную сложной функции у = (2х + 5) 1000 .

Решение. В данном случае мы рассматриваем комбинацию следующих функций:

Теперь мы умеем вычислять производные почти любых функций, которые можно записать с помощью элементарных функций и арифметических операций. При этом нам не надо использовать определение понятия производной и вычислять какие бы то ни было пределы. Достаточно знать производные основных функций и несколько (всего лишь 5) правил дифференцирования. Навыки дифференцирования функций пригодятся в будущем при решении практических задач, связанных с производными.

Примеры решения производных с ответами

Простое объяснение принципов решения производных и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.

Алгоритм решения производных

Для вычисления производных вам потребуется таблица производных. Кроме того, существуют формулы для нахождения сложных производных.

Процесс нахождения производный называется дифференцированием.

  1. 0, c neq 1″ title=”Rendered by QuickLaTeX.com” height=”20″ width=”219″ style=”vertical-align: -5px;” data-src=”https://nauchniestati.ru/wp-content/ql-cache/quicklatex.com-6de2737be737636e1e7a1dd4591cc8c6_l3.svg” />
  2. 0, c neq 1″ title=”Rendered by QuickLaTeX.com” height=”20″ width=”180″ style=”vertical-align: -5px;” data-src=”https://nauchniestati.ru/wp-content/ql-cache/quicklatex.com-13dcb3c76320d25c630cbd07af265a41_l3.svg” />

– производная суммы (разницы).

– производная произведения.

– производная частного.

Нужна помощь в написании работы?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Примеры решений производных

Задача

Найти производную функции

Решение

Заданная функция является сложной и её производная равна произведению производной от косинуса на производную от его аргумента:

Ответ

Задание

Найти производную функции

Решение

Обозначим , где . Тогда, согласно правила вычисления производной сложной функции, получим:

Ответ

Задача

Найти производную функции при .

Решение

.
.

Ответ

.

Задача

Найти производную функции .

Решение

.
После приведения подобных членов получаем:
.

Ответ

Задача

Найти производную функции .

Решение

В этом примере квадратный корень извлекается из суммы . Поэтому сначала вычисляем производную от квадратного корня, а затем умножаем ее на производную от подкоренного выражения:
.

Ответ

.

Задача

Найти производную функции .

Решение

Применяя правила дифференцирования дробей, получаем:

.
Применяя правила дифференцирования котангенса, получаем:
.
Учитывая, что и , после упрощения получим:
.

Ответ

.

Задача

Найти производную функции .

Решение

Применяя правила дифференцирования дробей, получаем:
.

Ответ

.

Задача

Найти производную функции .

Решение

Применяя правила дифференцирования дробей, получаем:
.

Ответ

.

Задача

Найти производную функции .

Решение

Дифференцирование можно произвести в два этапа: вначале продифференцировать степень функции арксинус, а затем произвести дифференцирование самого арксинуса, перемножив результаты:
.

Ответ

.

Задача

Найти производную функции .

Решение

По правилам дифференцирования показательной функции с основанием , производная этой функции равна произведению самой функции на производную функции, являющейся показателем степени:
.

Ответ

.

Типичные ошибки при вычислении производной.

В эпиграфе описана реальная ситуация из моей практики. Вопрос возник, когда ученик запутался в правилах дифференцирования функций, в частности, не смог определить производную произведения двух функций. Во избежание подобной трактовки этой статьи напомню, что мы занимаемся именно математикой, и здесь термин “произведение” обозначает результат операции умножения, а “производная” это предел отношения приращения функции к приращению аргумента, когда последнее стремится к нулю. Процесс вычисления производной называется дифференцированием.

Производные элементарных функций по определению, т.е. через предел, вычисляют только однажды на лекции (на уроке), чтобы закрепить связь производной и предела. В дальнейшем нас интересует только практическое применение этого понятия, поэтому для вычисления производной пользуются готовыми Формулами и Правилами дифференцирования функций.

Здесь мы посмотрим как надо и как не надо вычислять производные, но, к сожалению, многие школьники и даже студенты это делают.

Как надо вычислять производные

Как НЕ надо вычислять производные

  1. Прежде всего, не надо усложнять простое.
  2. Не надо путать слагаемые и сомножители (сумму и произведение).
  3. Не надо путать степенную xа и показательную ax функции.
  4. Не надо забывать о том, что производная сложной функции вычисляется “с продолжением” до получения табличной формулы.
  5. Не надо стесняться ставить скобки.

В большинстве последующих примеров представлены варианты вычислений производных, в которых

1. вычисления выполнены совсем плохо , с явными ошибками;
2. правильно, но неоптимально , т.е. долго и с вероятными ошибками на невнимательность;
3. совсем хорошо .

Не надо усложнять простое.

Обратите внимание, на правило, которое я поставила под номером один.

Если в произведении один из сомножителей является постоянной величиной, то совершенно не обязательно пользоваться правилом производной произведения. Более того, не нужно этого делать, так как часто такая операция сопровождается ошибками. Постоянный множитель можно выносить за знак производной!

Пример 1.

Если в дроби числитель или знаменатель является постоянной величиной, то совершенно необязательно пользоваться правилом для производной дроби. Это действие у школьников и студентов ещё чаще сопровождается ошибками. Постоянный множитель можно выносить за знак производной!

Пример 2.

Пример 3.

Самая частая ошибка в подобных примерах – забыть поставить штрих (обозначение производной) над числом или поставить его и “не увидеть” при следующем действии, т.е. не учесть, что производная константы (числа) равна нулю.

Здесь для первого и третьего примеров простота и качество подхода c вынесением числового множителя за скобки очевидна. Но не всё так однозначно для второго примера, где в знаменателе находится тригонометрическая функция. Более того, соглашусь, что для тех учеников, которые плохо владеют производной сложной функции (правилом 5), более предпочтительным в этом примере может оказаться правило дифференцирования дроби.

Однако, для ряда других функций, особенно для степенных, просто необходимо знаменатель “превращать” в числитель, а корни — в степени, потому что в этом случае мы сможем воспользоваться самой простой и самой запоминающейся табличной формулой (x α ) = αx α − 1 .

Пример 4.

Пример 5.

В этих двух примерах, представлены обычные ошибки при дифференцировании дроби с константой, а в следующем примере переход от корня к дробной степени нужен потому, что иначе часто забывают, что подобная функция не является табличной и должна дифференцироваться по правилу для сложной функции.

Пример 6.

Не надо путать слагаемые и сомножители (сумму и произведение).

Константа-слагаемое при дифференцировании обнуляется, константа-сомножитель при дифференцировании сохраняется.

Кроме того, почему-то для многих учеников производную функции y = x 2 + 0,1 вычислить легче, чем такую же производную вида (0,1 + х 2 ) . И для производной функции y = 0,1х 2 часто догадываются о существовании первого правила, а для (х 2 ·0,1) нет.
Если Вы допускаете ошибки такого рода, то вспомните, что от перестановки мест слагаемых сумма не изменяется, и от перестановки сомножителей произведение не изменяется. Переставьте их так, как вам удобнее, и аккуратно примените первое или второе правила дифференцирования.

Пример 7.



Не надо путать степенную xа и показательную ax функции.

В первом случае переменная находится в основании степени, читаем: “икс в степени а”. Во втором — переменная в показателе степени, читаем “а в степени икс”. Функции разные, формулы для вычисления производных разные. См. таблицу.

Пример 8.

Пример 9.

Это пример для продвинутых. Задумайтесь о том, как бы Вы вычислили производную функции y = x x , в которой переменную поместили и в основание, и в показатель степени.
Хорошо подумав, но не раньше, кликните по , чтобы раскрыть мой ответ.

Это сложная функция, которая не относится напрямую ни к классу степенных, ни к классу показательных. Для вычисления производной в таких случаях часто требуется произвести предварительные преобразования. Например, здесь сначала выражение прологарифмировали, затем нашли производные обеих частей равенства по своим переменным и, наконец, составили уравнение для нахождения нужной производной по переменной х.

Сложная функция, это функция зависящая не напрямую от заданной переменной, а от другой функции. Иными словами, её значение нельзя вычислить в одно действие. Например, функции y = sinx 2 и y = sin 2 x являются сложными. Посмотрим, как вычисляются их значения, например при х = 2.

Для функции y = sinx 2 нужно сначала возвести x в квадрат: 2 2 = 4, а затем вычислить значение синуса 4-ёх. Сделаем это с помощью калькулятора: sin4 = −0,75680249530792825. ≈ −0,76 (не забудьте, что аргументы тригонометрических функций считаются заданными в радианах).

Для функции y = sin 2 x сначала определяем значение синуса 2-ух с помощью калькулятора: sin2 = 0,9092974268256816. а затем возводим это значение в квадрат sin 2 2 = (0,9092974268256816. ) 2 = 0,82682181043180595. ≈ 0,83.

Таким образом, мы сначала вычисляем значение внутренней функции, а затем используем его как аргумент для внешней.
Согласно пятому правилу дифференцирования, при определении производной нужно поступать наоборот – сначала вычислять производную внешней функции по её аргументу, а затем умножать её на производную внутренней.

Как я уже упоминала, в этой операции ошибаются чаще всего. Ошибки могут быть самые разные, распространены следующие три.

1-я ошибка) Можно просто не применить нужное правило, “не заметив”, что функция сложная.
В следующем примере формулы дифференцирования степенной и тригонометрической функций использованы не последовательно, а одновременно, производная неверно вычислена в одно действие.

Пример 10.

2-я ошибка) Можно не разобраться, где внутренняя, а где внешняя функции.
В следующем примере показатель степени стоит над x, т.е. над аргументом, поэтому степенная функция внутренняя, а синус внешняя. Ученик воспринял это иначе, решил, что синус в квадрате и допустил ошибку.

Пример 11.

Чтобы избавиться от ошибок такого рода, научиться анализировать сложную функцию, отделять внутреннюю от внешней, нужно просто смотреть в каком порядке Вы бы проводили вычисления, и дифференцирование проводить в обратном порядке. При этом можно расставлять отсутствующие скобки, а если всё равно испытываете трудности, то вводить дополнительные обозначения. Что касается степеней, то можно запомнить следующее – над каким обозначением стоит показатель степени, то и является её основанием (возводится в степень).

Пример 12.

Здесь в конце использована тригонометрическая формула синуса двойного угла для того, чтобы записать ответ в наиболее компактной форме.

Пример 13.

Здесь в конце переставлены сомножители также для того, чтобы записать ответ в более компактной и удобочитаемой форме.

3-я ошибка) Правило используется не до конца
Один раз учли, что функция сложная и хватит. А если функция вложена несколько раз? Например, корень квадратный из суммы двух логарифмов с разными основаниями, первый из которых зависит от sinx, а второй от cosx. Или арктангенс, зависящий от натурального логарифма, который, в свою очередь, зависит от х в квадрате.

Пример 14.

Пример 15.

Не надо стесняться ставить скобки.

Предыдущий пример демонстрирует выход из положения с помощью введения дополнительных обозначений. Но, на мой взгляд, это всё-таки не самый оптимальный способ для длинных вычислений. Лучший подход к дифференцированию сложной функции – скобки, которые можно дописывать явно или, по мере укрепления навыка, представлять себе мысленно.
Расставляем скобки и постепенно снаружи внутрь раскрываем их. Содержимое очередной скобки является переменной, по которой производится дифференцирование по формуле fu·(u) . Производную fu находим по таблице производных, заменяя в формуле x на u. Если всё сделано правильно, то процесс закончится тем, что содержимое последней, самой внутренней скобки полностью совпадёт с одной из табличных формул для производных.

Пример 16.

PS: В примерах 11 и 14 допущены ошибки, не только упомянутые в комментариях к ним, но ещё по одной стандартной ошибке. Заметили какие?

Переход на главную страницу сайта “Математичка”.

Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.

Есть вопросы? пожелания? замечания?
Обращайтесь – mathematichka@yandex.ru

Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено. Ставьте гиперссылку.

Производная сложной функции

Функции сложного вида не всегда подходят под определение сложной функции. Если имеется функция вида y = sin x – ( 2 – 3 ) · a r c t g x x 5 7 x 10 – 17 x 3 + x – 11 , то ее нельзя считать сложной в отличие от y = sin 2 x .

Данная статья покажет понятие сложной функции и ее выявление. Поработаем с формулами нахождения производной с примерами решений в заключении. Применение таблицы производных и правила дифференцирования заметно уменьшают время для нахождения производной.

Основные определения

Сложной функцией считается такая функция, у которой аргумент также является функцией.

Обозначается это таким образом: f ( g ( x ) ) . Имеем, что функция g ( x ) считается аргументом f ( g ( x ) ) .

Если есть функция f и является функцией котангенса, тогда g ( x ) = ln x – это функция натурального логарифма. Получаем, что сложная функция f ( g ( x ) ) запишется как arctg(lnx). Или функция f , являющаяся функцией возведенной в 4 степень, где g ( x ) = x 2 + 2 x – 3 считается целой рациональной функцией, получаем, что f ( g ( x ) ) = ( x 2 + 2 x – 3 ) 4 .

Очевидно, что g ( x ) может быть сложной. Из примера y = sin 2 x + 1 x 3 – 5 видно, что значение g имеет кубический корень с дробью. Данное выражение разрешено обозначать как y = f ( f 1 ( f 2 ( x ) ) ) . Откуда имеем, что f – это функция синуса, а f 1 – функция, располагаемая под квадратным корнем, f 2 ( x ) = 2 x + 1 x 3 – 5 – дробная рациональная функция.

Степень вложенности определено любым натуральным числом и записывается как y = f ( f 1 ( f 2 ( f 3 ( . . . ( f n ( x ) ) ) ) ) ) .

Понятие композиция функции относится к количеству вложенных функций по условию задачи. Для решения используется формула нахождения производной сложной функции вида

( f ( g ( x ) ) ) ‘ = f ‘ ( g ( x ) ) · g ‘ ( x )

Примеры

Найти производную сложной функции вида y = ( 2 x + 1 ) 2 .

Решение

По условию видно, что f является функцией возведения в квадрат, а g ( x ) = 2 x + 1 считается линейной функцией.

Применим формулу производной для сложной функции и запишем:

f ‘ ( g ( x ) ) = ( ( g ( x ) ) 2 ) ‘ = 2 · ( g ( x ) ) 2 – 1 = 2 · g ( x ) = 2 · ( 2 x + 1 ) ; g ‘ ( x ) = ( 2 x + 1 ) ‘ = ( 2 x ) ‘ + 1 ‘ = 2 · x ‘ + 0 = 2 · 1 · x 1 – 1 = 2 ⇒ ( f ( g ( x ) ) ) ‘ = f ‘ ( g ( x ) ) · g ‘ ( x ) = 2 · ( 2 x + 1 ) · 2 = 8 x + 4

Необходимо найти производную с упрощенным исходным видом функции. Получаем:

y = ( 2 x + 1 ) 2 = 4 x 2 + 4 x + 1

Отсюда имеем, что

y ‘ = ( 4 x 2 + 4 x + 1 ) ‘ = ( 4 x 2 ) ‘ + ( 4 x ) ‘ + 1 ‘ = 4 · ( x 2 ) ‘ + 4 · ( x ) ‘ + 0 = = 4 · 2 · x 2 – 1 + 4 · 1 · x 1 – 1 = 8 x + 4

При решении задач такого вида важно понимать, где будет располагаться функция вида f и g ( x ) .

Следует найти производные сложных функций вида y = sin 2 x и y = sin x 2 .

Решение

Первая запись функции говорит о том, что f является функцией возведения в квадрат, а g ( x ) – функцией синуса. Тогда получим, что

y ‘ = ( sin 2 x ) ‘ = 2 · sin 2 – 1 x · ( sin x ) ‘ = 2 · sin x · cos x

Вторая запись показывает, что f является функцией синуса, а g ( x ) = x 2 обозначаем степенную функцию. Отсюда следует, что произведение сложной функции запишем как

y ‘ = ( sin x 2 ) ‘ = cos ( x 2 ) · ( x 2 ) ‘ = cos ( x 2 ) · 2 · x 2 – 1 = 2 · x · cos ( x 2 )

Формула для производной y = f ( f 1 ( f 2 ( f 3 ( . . . ( f n ( x ) ) ) ) ) ) запишется как y ‘ = f ‘ ( f 1 ( f 2 ( f 3 ( . . . ( f n ( x ) ) ) ) ) ) · f 1 ‘ ( f 2 ( f 3 ( . . . ( f n ( x ) ) ) ) ) · · f 2 ‘ ( f 3 ( . . . ( f n ( x ) ) ) ) · . . . · f n ‘ ( x )

Найти производную функции y = sin ( ln 3 a r c t g ( 2 x ) ) .

Решение

Данный пример показывает сложность записи и определения расположения функций. Тогда y = f ( f 1 ( f 2 ( f 3 ( f 4 ( x ) ) ) ) ) обозначим, где f , f 1 , f 2 , f 3 , f 4 ( x ) является функцией синуса, функцией возведения в 3 степень, функцией с логарифмом и основанием е , функцией арктангенса и линейной.

Из формулы определения сложной функции имеем, что

y ‘ = f ‘ ( f 1 ( f 2 ( f 3 ( f 4 ( x ) ) ) ) ) · f 1 ‘ ( f 2 ( f 3 ( f 4 ( x ) ) ) ) · · f 2 ‘ ( f 3 ( f 4 ( x ) ) ) · f 3 ‘ ( f 4 ( x ) ) · f 4 ‘ ( x )

Получаем, что следует найти

  1. f ‘ ( f 1 ( f 2 ( f 3 ( f 4 ( x ) ) ) ) ) в качестве производной синуса по таблице производных, тогда f ‘ ( f 1 ( f 2 ( f 3 ( f 4 ( x ) ) ) ) ) = cos ( ln 3 a r c t g ( 2 x ) ) .
  2. f 1 ‘ ( f 2 ( f 3 ( f 4 ( x ) ) ) ) в качестве производной степенной функции, тогда f 1 ‘ ( f 2 ( f 3 ( f 4 ( x ) ) ) ) = 3 · ln 3 – 1 a r c t g ( 2 x ) = 3 · ln 2 a r c t g ( 2 x ) .
  3. f 2 ‘ ( f 3 ( f 4 ( x ) ) ) в качестве производной логарифмической, тогда f 2 ‘ ( f 3 ( f 4 ( x ) ) ) = 1 a r c t g ( 2 x ) .
  4. f 3 ‘ ( f 4 ( x ) ) в качестве производной арктангенса, тогда f 3 ‘ ( f 4 ( x ) ) = 1 1 + ( 2 x ) 2 = 1 1 + 4 x 2 .
  5. При нахождении производной f 4 ( x ) = 2 x произвести вынесение 2 за знак производной с применением формулы производной степенной функции с показателем, который равняется 1 , тогда f 4 ‘ ( x ) = ( 2 x ) ‘ = 2 · x ‘ = 2 · 1 · x 1 – 1 = 2 .

Производим объединение промежуточных результатов и получаем, что

y ‘ = f ‘ ( f 1 ( f 2 ( f 3 ( f 4 ( x ) ) ) ) ) · f 1 ‘ ( f 2 ( f 3 ( f 4 ( x ) ) ) ) · · f 2 ‘ ( f 3 ( f 4 ( x ) ) ) · f 3 ‘ ( f 4 ( x ) ) · f 4 ‘ ( x ) = = cos ( ln 3 a r c t g ( 2 x ) ) · 3 · ln 2 a r c t g ( 2 x ) · 1 a r c t g ( 2 x ) · 1 1 + 4 x 2 · 2 = = 6 · cos ( ln 3 a r c t g ( 2 x ) ) · ln 2 a r c t g ( 2 x ) a r c t g ( 2 x ) · ( 1 + 4 x 2 )

Разбор таких функций напоминает матрешки. Правила дифференцирования не всегда могут быть применены в явном виде при помощи таблицы производных. Зачастую нужно применять формулу нахождения производных сложных функций.

Существуют некоторые различия сложного вида от сложных функций. При явном умении это различать, нахождение производных будет давать особенно легко.

Необходимо рассмотреть на приведении подобного примера. Если имеется функция вида y = t g 2 x + 3 t g x + 1 , тогда ее можно рассмотреть в качестве сложной вида g ( x ) = t g x , f ( g ) = g 2 + 3 g + 1 . Очевидно, что необходимо применение формулы для сложной производной:

f ‘ ( g ( x ) ) = ( g 2 ( x ) + 3 g ( x ) + 1 ) ‘ = ( g 2 ( x ) ) ‘ + ( 3 g ( x ) ) ‘ + 1 ‘ = = 2 · g 2 – 1 ( x ) + 3 · g ‘ ( x ) + 0 = 2 g ( x ) + 3 · 1 · g 1 – 1 ( x ) = = 2 g ( x ) + 3 = 2 t g x + 3 ; g ‘ ( x ) = ( t g x ) ‘ = 1 cos 2 x ⇒ y ‘ = ( f ( g ( x ) ) ) ‘ = f ‘ ( g ( x ) ) · g ‘ ( x ) = ( 2 t g x + 3 ) · 1 cos 2 x = 2 t g x + 3 cos 2 x

Функция вида y = t g x 2 + 3 t g x + 1 не считается сложной, так как имеет сумму t g x 2 , 3 t g x и 1 . Однако, t g x 2 считается сложной функцией, то получаем степенную функцию вида g ( x ) = x 2 и f , являющуюся функцией тангенса. Для этого следует продифференцировать по сумме. Получаем, что

y ‘ = ( t g x 2 + 3 t g x + 1 ) ‘ = ( t g x 2 ) ‘ + ( 3 t g x ) ‘ + 1 ‘ = = ( t g x 2 ) ‘ + 3 · ( t g x ) ‘ + 0 = ( t g x 2 ) ‘ + 3 cos 2 x

Переходим к нахождению производной сложной функции ( t g x 2 ) ‘ :

f ‘ ( g ( x ) ) = ( t g ( g ( x ) ) ) ‘ = 1 cos 2 g ( x ) = 1 cos 2 ( x 2 ) g ‘ ( x ) = ( x 2 ) ‘ = 2 · x 2 – 1 = 2 x ⇒ ( t g x 2 ) ‘ = f ‘ ( g ( x ) ) · g ‘ ( x ) = 2 x cos 2 ( x 2 )

Получаем, что y ‘ = ( t g x 2 + 3 t g x + 1 ) ‘ = ( t g x 2 ) ‘ + 3 cos 2 x = 2 x cos 2 ( x 2 ) + 3 cos 2 x

Функции сложного вида могут быть включены в состав сложных функций, причем сами сложные функции могут являться составными функции сложного вида.

Для примера рассмотрим сложную функцию вида y = log 3 x 2 + 3 cos 3 ( 2 x + 1 ) + 7 e x 2 + 3 3 + ln 2 x · ( x 2 + 1 )

Данная функция может быть представлена в виде y = f ( g ( x ) ) , где значение f является функцией логарифма по основанию 3 , а g ( x ) считается суммой двух функций вида h ( x ) = x 2 + 3 cos 3 ( 2 x + 1 ) + 7 e x 2 + 3 3 и k ( x ) = ln 2 x · ( x 2 + 1 ) . Очевидно, что y = f ( h ( x ) + k ( x ) ) .

Рассмотрим функцию h ( x ) . Это отношение l ( x ) = x 2 + 3 cos 3 ( 2 x + 1 ) + 7 к m ( x ) = e x 2 + 3 3

Имеем, что l ( x ) = x 2 + 3 cos 2 ( 2 x + 1 ) + 7 = n ( x ) + p ( x ) является суммой двух функций n ( x ) = x 2 + 7 и p ( x ) = 3 cos 3 ( 2 x + 1 ) , где p ( x ) = 3 · p 1 ( p 2 ( p 3 ( x ) ) ) является сложной функцией с числовым коэффициентом 3 , а p 1 – функцией возведения в куб, p 2 функцией косинуса, p 3 ( x ) = 2 x + 1 – линейной функцией.

Получили, что m ( x ) = e x 2 + 3 3 = q ( x ) + r ( x ) является суммой двух функций q ( x ) = e x 2 и r ( x ) = 3 3 , где q ( x ) = q 1 ( q 2 ( x ) ) – сложная функция, q 1 – функция с экспонентой, q 2 ( x ) = x 2 – степенная функция.

Отсюда видно, что h ( x ) = l ( x ) m ( x ) = n ( x ) + p ( x ) q ( x ) + r ( x ) = n ( x ) + 3 · p 1 ( p 2 ( p 3 ( x ) ) ) q 1 ( q 2 ( x ) ) + r ( x )

При переходе к выражению вида k ( x ) = ln 2 x · ( x 2 + 1 ) = s ( x ) · t ( x ) видно, что функция представлена в виде сложной s ( x ) = ln 2 x = s 1 ( s 2 ( x ) ) с целой рациональной t ( x ) = x 2 + 1 , где s 1 является функцией возведения в квадрат, а s 2 ( x ) = ln x – логарифмической с основанием е .

Отсюда следует, что выражение примет вид k ( x ) = s ( x ) · t ( x ) = s 1 ( s 2 ( x ) ) · t ( x ) .

Тогда получим, что

y = log 3 x 2 + 3 cos 3 ( 2 x + 1 ) + 7 e x 2 + 3 3 + ln 2 x · ( x 2 + 1 ) = = f n ( x ) + 3 · p 1 ( p 2 ( p 3 ( x ) ) ) q 1 ( q 2 ( x ) ) = r ( x ) + s 1 ( s 2 ( x ) ) · t ( x )

По структурам функции стало явно, как и какие формулы необходимо применять для упрощения выражения при его дифференцировании. Для ознакомления подобных задач и и для понятия их решения необходимо обратиться к пункту дифференцирования функции, то есть нахождения ее производной.

Применение производной к приближенным вычислениям

п.1. Определение и геометрический смысл дифференциала


Выберем на кривой (y=f(x)) начальную точку (A(x_0,y_0)). Если мы начнем перемещаться к точке (B(x,y)), то приращению аргумента (triangle x=AC) соответствует приращение функции (triangle y=BC). Если считать, что кривая приблизительно совпадает со своей касательной при малых приращениях (triangle x), то (BCapprox MC) и (triangle yapprox dy).

п.2. Алгоритм приближенных вычислений с помощью дифференциала

На входе: функция (y=f(x)), точка x*, в которой нужно посчитать значение функции
Шаг 1. Определяем ближайшую к x* начальную точку (x_0), для которой значение (y_0=f(x_0)) известно или легко находится.
Шаг 2. Находим выражение для первой производной (f'(x)).
Шаг 3. Находим значение производной в начальной точке (f'(x_0))
Шаг 4. Находим линейное приближение значения функции $$ y^*approx f(x_0)+f'(x_0)(x^*-x_0) $$ На выходе: значение y*

Например:
1) Найдем значение корня (sqrt<65>)
Функция (y=sqrt, x^*=65)
Начальная точка (x_0=64). Начальное значение функции (y_0=sqrt<64>=8)
Производная: (f'(x)=frac<1><2sqrt>)
Производная в начальной точке: (f'(x_0)=frac<1><2sqrt<64>>=frac<1><16>)
Подставляем: (y^*=sqrt<65>approx 8+frac<1><16>(65-64)=8+frac<1><16>=8,0625)
Оценим относительную ошибку для полученного результата.
Значение, полученное на калькуляторе: (sqrt<65>approx 8,062258). Откуда: $$ partial=frac<|8,062258|><8,062258>cdot 100text<%>approx 0,003text <%>$$ Таким образом, в данном случае линейное приближение имеет высокую точность, т.к. для (x_0=64) и (x^*=65) кривая (y=sqrt) очень близка к прямой, т.е. своей касательной.

2) Найдем значение корня (sqrt<5>)
Пусть начальная точка (x_0=4). Начальное значение функции (y_0=sqrt<4>=2)
Производная в начальной точке: (f'(x_0)=frac<1><2sqrt<4>>=frac14)
(y^*=sqrt<5>approx 2+frac14 (5-4)=2,25)
Значение, полученное на калькуляторе: (sqrt<5>approx 2,23607) $$ partial=frac<|2,23607-2,25|><2,23607>cdot 100text<%>approx 0,06text <%>$$ Точность стала хуже. Однако, её можно повысить, если взять (x_0=4,84).

3) Найдем (sqrt<5>) при (x_0=4,84).
(y_0=sqrt<4,84> =2,2)
Производная в начальной точке: (f'(x_0 )=frac<1><2cdot 2,2>=frac<1><4,4>)
(y^*=sqrt<5>approx 2,2+frac<1><4,4>(5-4,84)=2,2+frac<0,16><4,4>=2,2+frac<2><55>=2,23636…)
Значение (sqrt<5>approx 2,23607) $$ partial=frac<|2,23607-2,23636|><2,23607>cdot 100text<%>approx 0,01text <%>$$ Точность повысилась.

Вывод: точку (x_0) следует выбирать, исходя из поведения функции (y=f(x)) в окрестности (x^*). Чем ближе (x_0) к (x^*) и чем ближе кривая к касательной, тем точнее будет линейное приближение с помощью дифференциала.

п.3. Приближение с точностью до квадрата приращения

Например:
1) Найдем квадратичное слагаемое для (x^*=65, x_0=64, y=sqrt)
Вторая производная: (f”(x)=left(frac<1><2sqrt>right)’=frac12cdotleft(-frac12right)cdotfrac<1>>=-frac<1><4xsqrt>) $$ frac<2>(x^*-x_0)^2=-frac<(65-64)^2><2cdot 4cdot 64cdot 8>=-frac<1><4096>approx -0,0002 $$ Значит, квадратичное слагаемое дает поправку в 4-м знаке.
Используя полученное выше линейное приближение, получаем: $$ y^*=sqrt<65>approx 8,0625-0,0002=8,0623approx 8,062 $$ Квадратичное слагаемое указывает, что округлить результат нужно до 3-го знака после запятой.

2) Найдем квадратичное слагаемое для (x^*=5, x_0=4, y=sqrt) $$ frac<2>(x^*-x_0)^2=-frac<(5-4)^2><2cdot 4cdot 4cdot 2>=-frac<1><64>approx -0,02 $$ Получаем: $$ y^*=sqrt<5>approx 2,25-0,02=2,23approx 2,2 $$ Квадратичное слагаемое указывает, что округлить результат нужно до 1-го знака после запятой.

3) Найдем квадратичное слагаемое для (x^*=5, x_0=4,84, y=sqrt) $$ frac<2>(x^*-x_0)^2=-frac<(5-4,84)^2><2cdot 4cdot 4,84cdot 2,2>=-frac<0,0256><85,184>approx -0,0003 $$ Получаем: $$ y^*=sqrt<5>approx 2,2367-0,0003=2,2364approx 2,236 $$ Квадратичное слагаемое указывает, что округлить результат нужно до 3-го знака после запятой.

п.4. Полезные формулы приближений для функций вблизи нуля

Рассмотрим свойства приближений некоторых функций при (x_0=0) и (triangle x=xrightarrow 0).
В разложении ограничимся слагаемым (y(0)) и линейным приближением. Только если линейное приближение равно 0, будем учитывать слагаемое квадратичного приближения.
1) (y=sinx)
(y’=cosx, y”=-sinx)
(y(0)=0, y'(0)=1, y”(0)=0)
(sinxapprox 0+1cdot x-frac02cdot x^2approx x)

4) (y=e^x)
(y’=y”=e^x)
(y(0)=y'(0)=y”(0)=1)
(e^xapprox 1+1cdot x+frac12cdot x^2approx 1+x)
Пренебрегаем (frac<2>) как очень малым слагаемым.

Ссылка на основную публикацию