Площадь пирамиды – определение, свойства и формулы

Пирамиды. Правильные пирамиды. Теорема Эйлера. Формулы для объема, площади боковой поверхности и площади полной поверхности пирамиды

Пирамиды. Теорема Эйлера для пирамид
Правильные пирамиды. Свойства правильной пирамиды
Тетраэдры. Правильные тетраэдры
Формулы для объема, площади боковой поверхности и площади полной поверхности пирамиды

Пирамиды

Рассмотрим произвольную плоскость α , произвольный выпуклый n – угольник A1A2 . An , расположенный в этой плоскости, и точку S , не лежащую в плоскости α .

Определение 1. Пирамидой ( n – угольной пирамидой) называют фигуру, образованную отрезками, соединяющими точку S со всеми точками многоугольника A1A2 . An (рис. 1) .

Точку S называют вершиной пирамиды.

Точки A1 , A2 , . , An , S часто называют просто вершинами пирамиды.

Боковые ребра и ребра основания пирамиды часто называют просто ребрами пирамиды.

Множество всех боковых граней пирамиды составляет боковую поверхность пирамиды.

Боковые грани и основание пирамиды часто называют просто гранями пирамиды.

Полная поверхность пирамиды состоит из основания пирамиды и ее боковой поверхности.

Теорема Эйлера. Для любой пирамиды справедливо равенство:

Доказательство. Заметим, что у n – угольной пирамиды (n + 1) вершина, n боковых граней, 1 основание, n ребер основания и n боковых ребер. Следовательно, у n – угольной пирамиды (n + 1) грань и 2n ребер.

то теорема Эйлера доказана.

Правильные пирамиды. Свойства правильной пирамиды

Замечание 2. Если центр основания A1A2 . An правильной пирамиды SA1A2 . An обозначить буквой O , то длина отрезка SO будет равняться высоте пирамиды. Часто и сам отрезок SO называют высотой пирамиды, опущенной из вершины S .

Определение 4. Высоту боковой грани правильной пирамиды, опущенную из вершины S , называют апофемой .

На рисунке 3 отрезок SB – апофема грани SAnAn-1 и отрезок SC – апофема грани SA2A1 .

Замечание 3 . У любой правильной n – угольной пирамиды можно провести n апофем.

Свойства правильной пирамиды:

Все боковые ребра правильной пирамиды равны.

Все боковые грани правильной пирамиды являются равными равнобедренными треугольниками.

У любой правильной пирамиды все апофемы равны.

Все боковые ребра правильной пирамиды образуют с плоскостью основания пирамиды равные углы.

Все боковые грани правильной пирамиды образуют с плоскостью основания пирамиды равные двугранные углы.

Тетраэдры. Правильные тетраэдры

Определение 5. Произвольную треугольную пирамиду называют тетраэдром.

Утверждение. У любой правильной треугольной пирамиды противоположные ребра попарно перпендикулярны.

Доказательство. Рассмотрим правильную треугольную пирамиду SABC и пару ее противоположных ребер, например, AC и BS . Обозначим буквой D середину ребра AC . Поскольку отрезки BD и SD являются медианами в равнобедренных треугольниках ABC и ASC , то BD и SD перпендикулярны ребру AC (рис. 4).

По признаку перпендикулярности прямой и плоскости заключаем, что прямая AC перпендикулярна плоскости BSD. Следовательно, прямая AC перпендикулярна прямой BS , что и требовалось доказать.

Определение 6. Правильную треугольную пирамиду, у которой все ребра равны, называют правильным тетраэдром (рис. 5).

Задача. Найти высоту правильного тетраэдра с ребром a .

Решение. Рассмотрим правильный тетраэдр SABC . Пусть точка O – основание перпендикуляра, опущенного из вершины S на плоскость ABC. Поскольку SABC – правильная пирамида, то точка O является точкой пересечения медиан равностороннего треугольника ABC. Следовательно,

где буквой D обозначена середина ребра AC (рис. 6).

,

.

По теореме Пифагора из треугольника BSO находим

Ответ.

Формулы для объема, площади боковой и полной поверхности пирамиды

Введем следующие обозначения

Vобъем пирамиды
Sбокплощадь боковой поверхности пирамиды
Sполнплощадь полной поверхности пирамиды
Sоснплощадь основания пирамиды
Pоснпериметр основания пирамиды

Тогда справедливы следующие формулы для вычисления объема, площади боковой и полной поверхности пирамиды :

,

Формулы для объема, площади боковой и полной поверхности:

,

Формулы для объема, площади боковой и полной поверхности:

Формулы для объема, площади боковой и полной поверхности:

Пирамида. Площади поверхностей. Объём

Урок 36. Подготовка к ЕГЭ по математике

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока “Пирамида. Площади поверхностей. Объём”

Напомним, что пирамида – это многогранник, в основании которого лежит –угольник, а остальные граней – треугольники с общей вершиной.

Многоугольник называется основанием пирамиды.

Треугольники , , …, называются боковыми гранями пирамиды.

Точка вершиной пирамиды, а отрезки , , …, – её боковыми рёбрами.

Отрезок, соединяющий вершину пирамиды с плоскостью её основания и перпендикулярный к этой плоскости, называется высотой пирамиды.

Пирамиду с вершиной и основанием называют -угольной пирамидой и обозначают так: .

Диагональное сечение – это сечение пирамиды плоскостью, которая проходит через два боковых ребра, не принадлежащих одной грани.

Объединение боковых граней называется боковой поверхностью пирамиды, а объединение всех граней называется полной поверхностью пирамиды.

Тогда площадью боковой поверхности пирамиды называется сумма площадей её боковых граней.

А площадью полной поверхности пирамиды называется сумма площадей всех её граней.

Объём пирамиды равен:

.

Пирамида, в зависимости от того, какой многоугольник лежит в основании, имеет своё название.

Пирамида называется правильной, если её основанием является правильный многоугольник, а все боковые рёбра равны.

Отрезок, соединяющий вершину пирамиды с центром основания, является её высотой.

Высота боковой грани правильной пирамиды, проведённая из её вершины к ребру основания, называется апофемой.

Выше изображена правильная пирамида. – одна из её апофем. Все апофемы правильной пирамиды равны друг другу.

Отметим некоторые свойства правильной -угольной пирамиды.

1. В правильной -угольной пирамиде все боковые рёбра равны между собой.

2. Боковые рёбра равно наклонены к основанию.

3. Из равенства боковых рёбер пирамиды следует и равенство её боковых граней.

4. Боковые грани равно наклонены к основанию.

5. Вершина проектируется в центр основания (основание высоты совпадает с центром основания).

6. Площадь боковой поверхности правильной пирамиды равна:

.

7. Объём правильной четырёхугольной пирамиды со стороной основания и высотой равен:

.

Параллельное сечение пирамиды – сечение пирамиды плоскостью, параллельной основанию.

Параллельное сечение пирамиды обладает следующими свойствами:

1. сечение, параллельное основанию пирамиды, отсекает на высоте пирамиды и боковых рёбрах пропорциональные отрезки;

2. в сечении получается многоугольник, подобный основанию;

3. площади сечения и основания относятся как квадраты их расстояний до вершины.

Усечённая пирамида – это часть пирамиды, заключённая между основанием и параллельным сечением пирамиды.

Основания усечённой пирамиды – подобные многоугольники, лежащие в параллельных плоскостях.

Боковые грани усечённой пирамиды – трапеции.

Высота усечённой пирамиды – это перпендикуляр, опущенный из любой точки верхнего основания на плоскость нижнего.

Площадь полной поверхности усечённой пирамиды равна сумме площади боковой поверхности и площадей двух оснований.

Объём усечённой пирамиды равен разности объёмов полной и отсечённой пирамиды, или его ещё можно вычислить по следующей формуле:

.

Правильная усечённая пирамида получается из правильной пирамиды.

Апофема – высота боковой грани правильной усечённой пирамиды.

Площадь боковой поверхности правильной усечённой пирамиды равна:

.

Основные моменты мы с вами повторили, а теперь давайте перейдём к практической части занятия.

Задача первая. Дана треугольная пирамида, боковые рёбра которой взаимно перпендикулярны и равны см, см и см. Найдите площадь боковой поверхности пирамиды.

Задача вторая. Дана правильная четырёхугольная пирамида со стороной основания см и высотой см. Найдите площадь полной поверхности пирамиды.

Задача третья. Найдите высоту правильной усечённой треугольной пирамиды , если стороны её оснований равны см и см, а боковое ребро равно см.

Задача четвёртая. В пирамиде боковое ребро перпендикулярно основанию и равно ребру . Треугольник – прямоугольный с катетами см и см. Найдите объём пирамиды.

Задача пятая. Найдите объём правильной треугольной пирамиды с ребром основания, равным см, и боковым ребром, равным см.

Площадь основания пирамиды

Основание правильной пирамиды является правильный многоугольник — равносторонний треугольник, квадрат. Основанием пирамиды называют ту фигуру, над которой расположена вершина пирамиды.То есть это та грань пирамиды, которая не включает в себя ее вершину. Площадь основания пирамиды — это площадь этой плоской фигуры.

Площадь основания правильной пирамиды

Правильная пирамида может быть трех видов:

  • треугольная,
  • четырехугольная,
  • шестиугольная.

Соответственно у правильной треугольной пирамида основание — равносторонний треугольник. У правильной четырехугольной пирамиды основание — квадрат. В основании шестиугольной правильной пирамиды в основании лежит шестиугольник. Приведем формулы для нахождения площади основания пирамиды:

Площадь основания правильной треугольной пирамиды

В основании равносторонний треугольник — находим его площадь:

, где — сторона треугольника.

Основание треугольной пирамиды

Площадь основания правильной четырехугольной пирамиды

В основании правильной четырехугольной пирамиды лежит квадрат, площадь квадрата:

, где — сторона квадрата.

Основание четырехугольной пирамиды

Площадь основания правильной шестиугольной пирамиды

Это площадь правильного шестиугольника. Если известна сторона шестиугольника, то площадь правильного шестиугольника находится по формуле:

Основание шестиугольной пирамиды

Площадь основания любой пирамиды

Площадь основания любой пирамиды — это площадь ее основания.

Если в основании пирамиды треугольник, то формулы для нахождения площади любого треугольника вы можете посмотреть в статье «Площадь треугольника».

В основании пирамиды может лежать любой прямоугольник, любой многоугольник. Обычно в школьных задачах, в основании пирамиды часто лежит треугольник, редко прямоугольник. Задачи, в которых в основании пирамиды лежит пятиугольник, семиугольник или произвольных многоугольник, практически не встречаются. Хотя их можно увидеть в олимпиадных задачах.

Теперь давайте решим несколько задач для нахождения площади основания пирамиды

Примеры решения задач

Задача 1

Дана правильная треугольная пирамида. Сторона основания пирамиды равна 2. Найдите площадь основания пирамиды.

Решение: пирамида правильная и треугольная, значит, в основании равносторонний треугольник. Тогда площадь основания пирамиды находится по формуле: . Нам дана сторона , тогда

Ответ:

Задача 2

Строитель решил построить здание в форме правильной шестиугольной пирамиды, для основания пирамиды у него есть доски, каждая площадью 0,5 м 2 . Сколько досок ему понадобится, если сторона основания пирамиды равна 6 м?

Рассчитаем площадь основания правильной шестиугольной пирамиды. Для этого воспользуемся формулой: . Подставим в нее значение стороны . Получим: м 2 .

Теперь подсчитаем, сколько нам понадобится досок: .

Задача 3

Основанием пирамиды является прямоугольный равнобедренный треугольник, с катетом, равным 4. Найдите площадь основания пирамиды.

Решение: иными словами — нас просят определить площадь прямоугольного равнобедренного треугольника. Так как треугольник прямоугольный и равнобедренный, то один из катетов будет основанием треугольника, а другой — высотой. Определяем площадь по формуле:

.

Площадь пирамиды — определение, свойства и формулы

Геометрические фигуры использовались в Вавилоне. Наиболее активное развитие геометрия получила в Др. Греции. Первый математик, установивший значение объёма и площади пирамиды, — Демокрит. Учёный Евклид предложил систематизировать все данные, полученные о фигуре в XII веке. Он дал первое определение рассматриваемому понятию, сравнив его с телесной фигурой, ограниченной плоскостями.

Описание фигуры

С древнегреческого языка пирамида переводится, как многогранник с несколькими гранями — боковыми и основанием. Первые имеют вид треугольников с одной вершиной. С учётом количества углов фигура делится на треугольную (тетраэдр), четырёхугольную, пятиугольную, шестиугольную, n-угольную. Элементы многогранника:

Развертка — плоская фигура, образованная путём совмещения поверхности тела с плоскостью. Грани и другие элементы не накладываются друг на друга. Развёртка поверхности похожа на гибкую плёнку. По факту, это пятиугольная пирамида с равными сторонами и углами. В плоскости она напоминает звезду.

Свойства и теоремы

Для фигуры характерны некоторые свойства. БР одинаковы, если нижняя сторона вписывается в сферу либо окружность так, что вершина приходится на центр. Другие особенности фигуры:

  • Боковые рёбра и плоскость нижней стороны формируют равные углы.
  • Если БР образуют с плоскостью одинаковые углы либо вблизи основания описывается окружность с вершиной в её центре, тогда все БР одинаковые.
  • Если грани наклонены к плоскости основания под определённым углом, тогда площадь боковой поверхности (БП) пирамиды равна ½ произведения периметра нижней стороны на высоту грани.

    При решении задач на сайтах онлайн либо из учебников по геометрии используются теоремы, которые связывают пирамиду с иными телами.

    Для расчета нужной величины применяется калькулятор, подходящая формула, свойства многогранников. Учёные доказали, что вокруг пирамиды можно описать сферу, если в основании находится многоугольник с окружностью.

    Центр сферы — точка, в которой пересекаются плоскости, проходящие через центральную часть ребер. Из теоремы вытекает, что около прямоугольной, квадратной и правильной пирамиды возможно описать сферу. В фигуру вписывается сфера, если биссекторные плоскости двугранных внутренних углов пересекаются в единой точке. Согласно другой теореме, конус вписан в пирамиду, если их вершины совпадают. Основание фигур и апофемы совпадают. Конус описывается вокруг пирамиды, если БР последней фигуры одинаковые.

    Цилиндр находится внутри многоугольника, если любое его основание совмещено с окружностью. Цилиндр описан около пирамиды, если вершина последней фигуры находится на одном из его оснований. Другая его нижняя часть описана внизу пирамиды. Подобное действие возможно, если в основании пирамиды вписан многоугольник.

    Для правильной пирамиды (нижняя сторона представлена в виде правильного многоугольника с вершиной в центре) характерны некоторые свойства: равенство БР, гранями являются равнобедренные конгруэнтные (равные) треугольники, внутрь и вокруг легко описывается и вписывается сфера. В последнем случае, когда центры сфер совпадают, сумма плоских углов равняется числу пи, а каждый — π/n, где n — количество сторон фигуры в основании.

    Пирамида считается прямоугольной, если одно БР перпендикулярно нижней стороне. В таком случае ребро является высотой. В тетраэдре либо треугольной пирамиде любая грань принимается в качестве основания.

    Практические задания

    На ЕГЭ выпускники решают задачи с объёмом и площадью куба, правильного многоугольника. Фигуры размещены на плоскости либо в системе координат. Основные формулы, которые применяются для вычисления показателей:

  • Площадь (S) пирамиды с четырьмя углами и сторонами. Для её расчета потребуется суммировать площади нижних сторон (квадрат и 4 треугольника).
  • Общая S: S основания+S боковой поверхности.
  • Площадь боковой поверхности пирамиды: S бок. пов.=½Pосн.d.
  • Площадь полной поверхности пирамиды. Для её вычисления понадобится суммировать площади БП и основания.
  • Площадь усеченной пирамиды: S1+S2+Sбок, где первые два показателя характерны для оснований, в последний для боковой поверхности.
  • Объём пирамиды: V=1/3Sосн.H.

    Задача 1. Дан четырёхугольный многогранник с равными сторонами в 72 и боковыми ребрами — по 164. Нужно найти площадь четырехугольной пирамиды.

    Решение: Так как S=Sбок+Sосн, подставив данные в формулу, получается 4S+a ². Так как Sбок состоит из 4-х одинаковых по площади треугольников, а основание представлено в виде квадрата, поэтому для нахождения площади Sбок используется формула Герона: S=√p (p-a)(p-b)(p-c).

    Для вычисления полупериметра потребуется (a+b+c)/2. В формулу поставляются данные. Выходит, что P=(72+164+164)/2=200. Тогда S=√200 (200−72)(200−164)(200−164)=√200х128х36х36=√100х256х36х36=10х16х6х6х=5760. Подставив данные в формулу, находится площадь: S=4х5760+72х72=28224.

    Задача 2. Стороны нижней части в шестиугольном многоугольнике равняются 22, а ребра — 61. Нужно найти Sбок. пов.

    Решение: Основание фигуры представлено в форме шестиугольника с одинаковыми сторонами. Его площадь соответствует площади шести треугольников. Их стороны равны 61, 61 и 22. Величина вычисляется по формуле S=6S. Чтобы найти S, применяется формула Герона: S=√p (p-a)(p-b)(p-c). Полупериметр равен (a+b+c)/2.

    Р=(61+61+22)/2=72. S=√72 (72−61)(72−61)(72−22)=√72х9х9х50=√36х2х9х9х2х25=540.

    Данные, подставив в Sбок. пов., приведут к результату 3240. В задаче 1 и 2 можно вычислить площадь через апофему.

    Задача 3. Необходимо определить S пов. прав. четырёхугольной пирамиды, когда стороны основания равняются 6, а высота — 4.

    Решение: Для определения S вычисляются площади БП и основания. Используется формула Sбок +S осн=4S+ a ². S осн равняется 36, так как оно представлено в виде квадрата со сторонами в 6. БП состоит из 4-х граней либо равных треугольников. Для нахождения площади вычисляется основание и высота фигуры:

    Площадь фигуры соответствует половине произведения апофемы и основания. Первый элемент проведён ко второму. Так как известно, что основание равно 6, поэтому находится высота. Если начертить и рассмотреть треугольник, можно заметить, что катет равен 4. Он же является высотой пирамиды. Значение второго катета — 3 (он соответствует ½ ребра основания).

    Для вычисления гипотенузы используется теорема Пифагора:

    Площадь БП вычисляется следующим образом:

    При решении задач рекомендуется ориентироваться на чертеж, использовать общепринятые теоремы и свойства фигур. Для наглядности фигура размещается в плоскости в нескольких проекциях. В старших классах, чтобы найти объём либо площадь, многогранники отображаются с помощью координат, функций косинуса и синуса.

    Последние переменные используются, чтобы найти значение углов, как острых, так и тупых. Через полученное число и дополнительные формулы, аксиомы вычисляется площадь разных составных элементов фигуры.

    Геометрические фигуры. Правильная пирамида.

    Правильная пирамида – когда основанием пирамиды является правильный многоугольник, а высота проецируется в центр основания (или проходит через него).

    В правильной пирамиде все боковые ребра имеют одинаковую величину, и каждая боковая грань является равнобедренными треугольниками одного размера.

    Правильная пирамида обладает следующими свойствами:

    • боковые рёбра правильной пирамиды имеют равную величину;
    • в правильной пирамиде каждая боковая грань — конгруэнтный равнобедренный треугольник;
    • во все правильные пирамиды можно как вписать, так и описать вокруг неё сферу;
    • когда центры вписанной и описанной сферы совпадают, значит, сумма плоских углов у вершины пирамиды равняется , а всякий из них соответственно , где n — число сторон многоугольника основания;
    • площадь боковой поверхности правильной пирамиды равняется ½ произведения периметра основания на апофему.

    Формулы для правильной пирамиды.

    V – объем пирамиды,

    S – площадь основания пирамиды,

    h – высота пирамиды,

    Sb – площадь боковой поверхности пирамиды,

    a – апофема (не путать с α) пирамиды,

    P – периметр основания пирамиды,

    n – число сторон основания пирамиды,

    b – длина бокового ребра пирамиды,

    α – плоский угол при вершине пирамиды.

    Ниже указанная формула определения объема используется лишь для правильной пирамиды:

    V – объем правильной пирамиды,

    h – высота правильной пирамиды,

    n – количество сторон правильного многоугольника, основания правильной пирамиды,

    a – длина стороны правильного многоугольника.

    Боковое ребро правильной пирамиды находят по формуле:

    где b — боковое ребро правильной пирамиды (SA, SB, SC, SD либо SE),

    n — количество сторон правильного многоугольника (основание правильной пирамиды),

    a — сторона правильного многоугольника (AB, BC, CD, DE либо EA) – основания правильной пирамиды,

    h — высота правильной пирамиды (OS).

    Указания к решению задач. Свойства, которые мы перечислили выше, помогают при практическом решении. Когда нужно определить углы наклона граней, их поверхность и так далее, значит общая методика сводится к разбиению всей объемной фигуры на отдельные плоские фигуры и применение их свойств для определения отдельных элементов пирамиды, так как большинство элементов оказываются общими для нескольких фигур.

    Нужно разбить всю объемную фигуру на отдельные элементы – треугольники, квадраты, отрезки. Дальше, к отдельным элементам применяем знания из курса планиметрии, что очень упрощает определение ответа.

    Правильная треугольная пирамида.

    Правильная треугольная пирамида – это пирамида, у которой основанием оказывается правильный треугольник, а вершина опускается в центр основания.

    Формулы для правильной треугольной пирамиды.

    Формула для нахождения объема правильной треугольной пирамиды:

    V – объем правильной пирамиды, которая имеет в основании правильный (равносторонний) треугольник,

    h – высота правильной пирамиды,

    a – длина стороны основания правильной пирамиды.

    Так как правильная треугольная пирамида – это частный случай правильной пирамиды, значит, формулы, верные для правильной пирамиды, оказываются верными и для правильной треугольной.

    Еще одним частным случаем правильно пирамиды является тетраэдр.

    Площадь пирамиды – определение, свойства и формулы

    Пирамида – (от греч. pyramis, род. п. pyramidos), многогранник,
    основание которого многоугольник, а остальные грани треугольники, имеющие
    общую вершину. По числу углов основания различают пирамиды треугольные,
    четырехугольные и т. д.

    Общая вершина боковых граней называется вершиной пирамиды. Высотой
    пирамиды называется перпендикуляр, опущенный из вершины пирамиды на
    плоскость основания.

    – многогранник, основание которого – многоугольник, а остальные грани – треугольники, имеющие общую вершину. Пирамида является частным случаем конуса .

    Пирамида называется правильной, если её основанием является правильный многоугольник, а вершина проецируется в центр основани

    Если все боковые ребра равны, то:

    • около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
    • боковые ребра образуют с плоскостью основания равные углы.
    • также верно и обратное, то есть если боковые ребра образуют с плоскостью основания равные углы или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

    Если боковые грани наклонены к плоскости основания под одним углом, то:

    • в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
    • высоты боковых граней равны;
    • площадь боковой поверхности равна половине произведения периметра
      • Объём пирамиды может быть вычислен по формуле:

      где — площадь основания и — высота;

      • Боковая поверхность — это сумма площадей боковых граней:

      • Полная поверхность — это сумма площади боковой поверхности и площади основания:

      • Для нахождения боковой поверхности в правильной пирамиде можно использовать формулы:

      где — апофема , — периметр основания, — число сторон основания, — боковое ребро, — плоский угол при вершине пирамиды.

      Особые случаи пирамиды

      Правильная пирамида

      Пирамида называется правильной, если основанием её является правильный многоугольник , а вершина проецируется в центр основания. Тогда она обладает такими свойствами:

      • боковые ребра правильной пирамиды равны;
      • в правильной пирамиде все боковые грани — равные равнобедренные треугольники;
      • в любую правильную пирамиду можно как вписать, так и описать около неё сферу;
      • если центры вписанной и описанной сферы совпадают, то сумма плоских углов при вершине пирамиды равна , а каждый из них соответственно , где n — количество сторон многоугольника основания [6] ;
      • площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

      Прямоугольная пирамида

      Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.

      Усечённая пирамида

      Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию.

      Пирамида

      Определение

      Пирамида – это многогранник, составленный из многоугольника (A_1A_2. A_n) и (n) треугольников с общей вершиной (P) (не лежащей в плоскости многоугольника) и противолежащими ей сторонами, совпадающими со сторонами многоугольника.
      Обозначение: (PA_1A_2. A_n) .
      Пример: пятиугольная пирамида (PA_1A_2A_3A_4A_5) .

      Треугольники (PA_1A_2, PA_2A_3) и т.д. называются боковыми гранями пирамиды, отрезки (PA_1, PA_2) и т.д. – боковыми ребрами, многоугольник (A_1A_2A_3A_4A_5) – основанием, точка (P) – вершиной.

      Высота пирамиды – это перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

      Пирамида, в основании которой лежит треугольник, называется тетраэдром.

      Пирамида называется правильной, если в ее основании лежит правильный многоугольник и выполнено одно из условий:

      ((a)) боковые ребра пирамиды равны;

      ((b)) высота пирамиды проходит через центр описанной около основания окружности;

      ((c)) боковые ребра наклонены к плоскости основания под одинаковым углом.

      ((d)) боковые грани наклонены к плоскости основания под одинаковым углом.

      Правильный тетраэдр – это треугольная пирамида, все грани которой – равные равносторонние треугольники.

      Теорема

      Условия ((a), (b), (c), (d)) эквивалентны.

      Доказательство

      Проведем высоту пирамиды (PH) . Пусть (alpha) – плоскость основания пирамиды.

      1) Докажем, что из ((a)) следует ((b)) . Пусть (PA_1=PA_2=PA_3=. =PA_n) .

      Т.к. (PHperp alpha) , то (PH) перпендикулярна любой прямой, лежащей в этой плоскости, значит, треугольники (PA_1H, PA_2H, PA_3H. PA_nH) – прямоугольные. Значит, эти треугольники равны по общему катету (PH) и гипотенузам (PA_1=PA_2=PA_3=. =PA_n) . Значит, (A_1H=A_2H=. =A_nH) . Значит, точки (A_1, A_2, . A_n) находятся на одинаковом расстоянии от точки (H) , следовательно, лежат на одной окружности с радиусом (A_1H) . Эта окружность по определению и есть описанная около многоугольника (A_1A_2. A_n) .

      2) Докажем, что из ((b)) следует ((c)) .

      Аналогично первому пункту треугольники (PA_1H, PA_2H, PA_3H. PA_nH) прямоугольные и равны по двум катетам. Значит, равны и их углы, следовательно, (angle PA_1H=angle PA_2H=. =angle PA_nH) .

      3) Докажем, что из ((c)) следует ((a)) .

      Аналогично первому пункту треугольники (PA_1H, PA_2H, PA_3H. PA_nH) прямоугольные и по катету и острому углу. Значит, равны и их гипотенузы, то есть (PA_1=PA_2=PA_3=. =PA_n) .

      4) Докажем, что из ((b)) следует ((d)) .

      Т.к. в правильном многоугольнике совпадают центры описанной и вписанной окружности (вообще говоря, эта точка называется центром правильного многоугольника), то (H) – центр вписанной окружности. Проведем перпендикуляры из точки (H) на стороны основания: (HK_1, HK_2) и т.д. Это – радиусы вписанной окружности (по определению). Тогда по ТТП ( (PH) – перпендикуляр на плоскость, (HK_1, HK_2) и т.д. – проекции, перпендикулярные сторонам) наклонные (PK_1, PK_2) и т.д. перпендикулярны сторонам (A_1A_2, A_2A_3) и т.д. соответственно. Значит, по определению (angle PK_1H, angle PK_2H) равны углам между боковыми гранями и основанием. Т.к. треугольники (PK_1H, PK_2H, . ) равны (как прямоугольные по двум катетам), то и углы (angle PK_1H, angle PK_2H, . ) равны.

      5) Докажем, что из ((d)) следует ((b)) .

      Аналогично четвертому пункту треугольники (PK_1H, PK_2H, . ) равны (как прямоугольные по катету и острому углу), значит, равны отрезки (HK_1=HK_2=. =HK_n) . Значит, по определению, (H) – центр вписанной в основание окружности. Но т.к. у правильных многоугольников центры вписанной и описанной окружности совпадают, то (H) – центр описанной окружности. Чтд.

      Следствие

      Боковые грани правильной пирамиды – равные равнобедренные треугольники.

      Определение

      Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой.
      Апофемы всех боковых граней правильной пирамиды равны между собой и являются также медианами и биссектрисами.

      Важные замечания

      1. Высота правильной треугольной пирамиды падает в точку пересечения высот (или биссектрис, или медиан) основания (основание – правильный треугольник).

      2. Высота правильной четырехугольной пирамиды падает в точку пересечения диагоналей основания (основание – квадрат).

      3. Высота правильной шестиугольной пирамиды падает в точку пересечения диагоналей основания (основание – правильный шестиугольник).

      4. Высота пирамиды перпендикулярна любой прямой, лежащей в основании.

      Определение

      Пирамида называется прямоугольной, если одно ее боковое ребро перпендикулярно плоскости основания.

      Важные замечания

      1. У прямоугольной пирамиды ребро, перпендикулярное основанию, является высотой пирамиды. То есть (SR) – высота.

      2. Т.к. (SR) перпендикулярно любой прямой из основания, то (triangle SRM, triangle SRP) – прямоугольные треугольники.

      3. Треугольники (triangle SRN, triangle SRK) – тоже прямоугольные.
      То есть любой треугольник, образованный этим ребром и диагональю, выходящей из вершины этого ребра, лежащей в основании, будет прямоугольным.

      Теорема

      Объем пирамиды равен трети произведения площади основания на высоту пирамиды: [V_>=dfrac13 S_>cdot h]

      Следствия

      Пусть (a) – сторона основания, (h) – высота пирамиды.

      1. Объем правильной треугольной пирамиды равен (V_>=dfrac<12>a^2h) ,

      2. Объем правильной четырехугольной пирамиды равен (V_>=dfrac13a^2h) .

      3. Объем правильной шестиугольной пирамиды равен (V_>=dfrac<2>a^2h) .

      4. Объем правильного тетраэдра равен (V_>=dfrac<12>a^3) .

      Теорема

      Площадь боковой поверхности правильной пирамиды равна полупроизведению периметра основания на апофему.

      Определение

      Рассмотрим произвольную пирамиду (PA_1A_2A_3. A_n) . Проведем через некоторую точку, лежащую на боковом ребре пирамиды, плоскость параллельно основанию пирамиды. Данная плоскость разобьет пирамиду на два многогранника, один из которых – пирамида ( (PB_1B_2. B_n) ), а другой называется усеченная пирамида ( (A_1A_2. A_nB_1B_2. B_n) ).

      Усеченная пирамида имеет два основания – многоугольники (A_1A_2. A_n) и (B_1B_2. B_n) , которые подобны друг другу.

      Высота усеченной пирамиды – это перпендикуляр, проведенный из какой-нибудь точки верхнего основания к плоскости нижнего основания.

      Важные замечания

      1. Все боковые грани усеченной пирамиды – трапеции.

      2. Отрезок, соединяющий центры оснований правильной усеченной пирамиды (то есть пирамиды, полученной сечением правильной пирамиды), является высотой.

  • Ссылка на основную публикацию