Параллельность плоскостей – способы, модели и примеры решения и построения

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок №6. Параллельность плоскостей

Перечень вопросов, рассматриваемых в теме

  1. Определение параллельных плоскостей;
  2. Свойства параллельных плоскостей;
  3. Признак параллельности плоскостей.

Глоссарий по теме

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.

Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.

Определение. Плоскости, которые не пересекаются, называются параллельными.

Основная литература:

Глазков Ю. А., Юдина И. И., Бутузов В. Ф. Рабочая тетрадь по геометрии 10 Москва «Просвещение» 2013 год. С. 1-4.

Дополнительная литература:

Зив Б. Г. Геометрия 10 класс Дидактические материалы Москва «Просвещение» 2013 год. С.4, 14, 24

Теоретический материал для самостоятельного изучения

Как известно из аксиом стереометрии, если плоскости имеют одну общую точку, то они пересекаются по прямой, проходящей через эту точку. Значит две плоскости или пересекаются, или не пересекаются.

Определение. Плоскости, которые не пересекаются, называются параллельными.

Параллельные плоскости α и β обозначаются α∥β.

Любая конструкция с полом, потолком и стенами даёт нам представление о параллельных плоскостях – пол и потолок как две параллельные плоскости, боковые стены как параллельные плоскости.

Признак параллельности плоскостей. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.

Доказательство.

Пусть α и β – данные плоскости, a1 и a2 – пересекающиеся прямые в плоскости α, а b1 и b2 соответственно параллельные им прямые в плоскости β.

Допустим, что плоскости α и β не параллельны, то есть они пересекаются по некоторой прямой c.

Прямая a1 параллельна прямой b1, значит она параллельна и самой плоскости β.

Прямая a2 параллельна прямой b2, значит она параллельна и самой плоскости β (признак параллельности прямой и плоскости).

Прямая c принадлежит плоскости α, значит хотя бы одна из прямых a1 или a2 пересекает прямую c, то есть имеет с ней общую точку. Но прямая c также принадлежит и плоскости β, значит, пересекая прямую c, прямая a1 или a2 пересекает плоскость β, чего быть не может, так как прямые a1 и a2 параллельны плоскости β.

Из этого следует, что плоскости α и β не пересекаются, то есть они параллельны.

Свойства параллельных плоскостей.

Теорема 1. Если две параллельные плоскости пересекаются третьей, то линии их пересечения параллельны.

Доказательство.

Пусть α и β – параллельные плоскости, а γ- плоскость, пересекающая их.

Плоскость α пересекается с плоскостью γ по прямой a.

Плоскость β пересекается с плоскостью γ по прямой b.

Линии пересечения a и b лежат в одной плоскости γ и потому могут быть либо пересекающимися, либо параллельными прямыми. Но, принадлежа двум параллельным плоскостям, они не могут иметь общих точек. Следовательно, они параллельны.

Теорема 2. Отрезки параллельных прямых, заключенных между двумя параллельными плоскостями, равны.

Доказательство.

Пусть α и β – параллельные плоскости, а a и b – параллельные прямые, пересекающие их.

Через прямые a и b можно провести плоскость – эти прямые параллельны, значит определяют плоскость, причём только одну.

Проведённая плоскость пересекается с плоскостью α по прямой AB, а с плоскостью β по прямой CD.

По предыдущей теореме прямые AB и CD параллельны. Четырехугольник ABCD есть параллелограмм (у него противоположные стороны параллельны). А раз это параллелограмм, то противоположные стороны у него равны, то есть BC=AD.

Теорема 3. Если прямая пересекает одну из двух параллельных плоскостей, то она пересекает и другую.

Доказательство.

Пусть α||β, a пересекает α в точке А.

Выберем в плоскости любую точку C. Через эту точку и прямую a проведём плоскость.

Так как плоскость имеет с плоскостями α и β общие точки A и C соответственно, то она пересекает эти плоскости по некоторым прямым b и c, которые проходят соответственно через точки A и C. По предыдущей теореме прямые b и c параллельны. Тогда в плоскости прямая a пересекает (в точке A) прямую b, которая параллельна прямой c. Значит, прямая a пересекает и прямую c в некоторой точке B. Так как прямая c лежит в плоскости, то точка B является точкой пересечения прямой a и плоскости. Теорема доказана.

Теорема 4. Если плоскость пересекает одну из двух параллельных плоскостей, то она пересекает и другую плоскость.

Доказательство.

Пусть α||β, α и γ пересекаются.

Докажем, что плоскости β и γ пересекаются.

Проведём в плоскости γ прямую a, пересекающую плоскость α в некоторой точке B. Тогда по теореме 3 прямая a пересекает и плоскость β в некоторой точке A. Следовательно, плоскости β и γ имеют общую точку A, т. е. пересекаются. Теорема доказана.

Теорема 5. Через точку, не лежащую в данной плоскости, можно провести плоскость, параллельную данной, и притом только одну.

Доказательство.

Пусть нам даны плоскость α и точка М, ей не принадлежащая.

Докажем, что существует плоскость β, которой принадлежит точка М, параллельная плоскости α.

В данной плоскости α проведём две произвольные пересекающиеся прямые a и b. Через точку M проведём прямые a1 и b1, параллельные соответственно a и b. Плоскость, проходящую через пересекающиеся прямые a1 и b1, обозначим β. На основании признака параллельности плоскостей плоскость β параллельна плоскости α.

Докажем методом от противного, что β — единственная плоскость, удовлетворяющая условию теоремы.

Допустим, что через точку M проходит другая плоскость, например β1, параллельная α.

Так как β1 пересекает плоскость β (они имеют общую точку M), то по теореме 4 плоскость β1 пересекает и плоскость α (β ‖ α). Мы пришли к противоречию. Таким образом, предположение о том, что через точку M можно провести плоскость, отличную от плоскости β и параллельную плоскости α, неверно. Значит, плоскость β — единственна. Теорема доказана.

Рассмотрим несколько примеров на применение данных свойств.

Даны две пересекающиеся прямые a и b точка А, не лежащая в плоскости этих прямых. Докажите, что через точку А проходит плоскость, параллельная прямым a и b, и притом только одна.

Доказательство.

Прямые a и b пересекаются по условию, следовательно, по следствию из аксиомы А1, эти прямые единственным образом определяют плоскость α.

Известно, что через точку А, не принадлежащую плоскости α, проходит единственная плоскость, параллельная α, т.е. параллельная прямым a и b (по теореме 5) .

Плоскости α и β параллельны, прямая m лежит в плоскости α. Докажите, что прямая m параллельна плоскости β.

Доказательство.

Предположим, что прямая m пересекает плоскость β в точке М. Тогда точка М принадлежит плоскости α (т.к. прямая m лежит в плоскости α) и М принадлежит плоскости β, значит, α и β пересекаются, но они параллельны по условию. Очевидно, m не пересекает плоскость α, т.е. параллельна ей.

Примеры и разбор решения заданий тренировочного модуля

№1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте

Три отрезка А1А2, В1В2 и С1С2, не лежащие в одной плоскости, имеют общую середину. Докажите, что плоскости А1В1С1 и А2В2С2 параллельны.

Доказательство.

Рассмотрим плоскость, проходящую через прямые А1А2 и В1В2

(она существует и единственная, т.к. прямые пересекаются).

В этой плоскости лежит четырехугольник А1В1А2В2, диагонали которого точкой пересечения делятся пополам. Следовательно, данный четырехугольник является параллелограммом (признак параллелограмма), значит, А1В1 и А2В2 параллельны.

Аналогично доказывается параллельность В1С1 и В2С2. Из вышеперечисленного следует, что плоскости А1В1С1 и А2В2С2 параллельны по признаку параллельности плоскостей.

Рассмотрим плоскость, проходящую через прямые А1А2 и В1В2

(она существует и единственная, т.к. прямые пересекаются).

В этой плоскости лежит четырехугольник А1В1А2В2, диагонали которого точкой пересечения делятся пополам. Следовательно, данный четырехугольник является параллелограммом (признак параллелограмма), значит, А1В1 и А2В2 параллельны.

Аналогично доказывается параллельность В1С1 и В2С2. Из вышеперечисленного следует, что плоскости А1В1С1 и А2В2С2 параллельны по признаку параллельности плоскостей.

Тип задания: выделение цветом

Два равнобедренных треугольника FKС и FKD с общим основанием FK расположены так, что точка С не лежит в плоскости FKD. Определите взаимное расположение прямых, содержащих медианы треугольников, проведенных к сторонам KС и KD.

Прямые, которые содержат медианы треугольников к KC и KD- выходят из одной точки F. Соответственно, можно сделать вывод, что данные прямые пересекаются.

Параллельные плоскости, признак и условия параллельности плоскостей

В данной статье будут изучены вопросы параллельности плоскостей. Дадим определение плоскостям, которые параллельны между собой; обозначим признаки и достаточные условия параллельности; рассмотрим теорию на иллюстрациях и практических примерах.

Параллельные плоскости: основные сведения

Параллельные плоскости – плоскости, не имеющие общих точек.

Чтобы обозначить параллельность применяют такой символ: ∥ . Если заданы две плоскости: α и β , являющиеся параллельными, краткая запись об этом будет выглядеть так: α ‖ β .

На чертеже, как правило, плоскости, параллельные друг другу, отображаются как два равных параллелограмма, имеющих смещение относительно друг друга.

В речи параллельность можно обозначить так: плоскости α и β параллельны, а также – плоскость α параллельна плоскости β или плоскость β параллельна плоскости α .

Параллельность плоскостей: признак и условия параллельности

В процессе решения геометрических задач зачастую возникает вопрос: а параллельны ли заданные плоскости между собой? Для получения ответа на этот вопрос используют признак параллельности, который также является достаточным условием параллельности плоскостей. Запишем его как теорему.

Плоскости являются параллельными, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.

Доказательство этой теоремы приводится в программе геометрии за 10 – 11 класс.

В практике для доказательства параллельности, в том числе, применяют две следующие теоремы.

Если одна из параллельных плоскостей параллельна третьей плоскости, то другая плоскость или также параллельна этой плоскости, или совпадает с ней.

Если две несовпадающие плоскости перпендикулярны некоторой прямой, то они параллельны.

На основе этих теорем и самого признака параллельности доказывается факт параллельности любых двух плоскостей.

Рассмотрим подробнее необходимое и достаточное условие параллельности плоскостей α и β , заданных в прямоугольной системе координат трехмерного пространства.

Допустим, что в некоторой прямоугольной системе координат задана плоскость α, которой соответствует общее уравнение A 1 x + B 1 y + C 1 z + D 1 = 0 , а также задана плоскость β , которую определяет общее уравнение вида A 2 x + B 2 y + C 2 z + D 2 = 0 .

Для параллельности заданных плоскостей α и β необходимо и достаточно, чтобы система линейных уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 не имела решения (являлась несовместной).

Предположим, что заданные плоскости, определяемые уравнениями A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 являются параллельными, а значит не имеют общих точек. Таким образом, не существует ни одной точки в прямоугольной системе координат трехмерного пространства, координаты которой отвечали бы условиям одновременно обоих уравнений плоскостей, т.е. система A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 не имеет решения. Если указанная система не имеет решений, тогда не существует ни одной точки в прямоугольной системе координат трехмерного пространства, чьи координаты одновременно отвечали бы условиям обоих уравнений системы. Следовательно, плоскости, заданные уравнениями A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 не имеют ни одной общей точки, т.е. они параллельны.

Разберем использование необходимого и достаточного условия параллельности плоскостей.

Заданы две плоскости: 2 x + 3 y + z – 1 = 0 и 2 3 x + y + 1 3 z + 4 = 0 . Необходимо определить, являются ли они параллельными.

Решение

Запишем систему уравнений из заданных условий:

2 x + 3 y + z – 1 = 0 2 3 x + y + 1 3 z + 4 = 0

Проверим, возможно ли решить полученную систему линейных уравнений.

Ранг матрицы 2 3 1 2 3 1 1 3 равен одному, поскольку миноры второго порядка равны нулю. Ранг матрицы 2 3 1 1 2 3 1 1 3 – 4 равен двум, поскольку минор 2 1 2 3 – 4 отличен от нуля. Таким образом, ранг основной матрицы системы уравнений меньше, чем ранг расширенной матрицы системы.

Совместно с этим, из теоремы Кронекера-Капелли следует: система уравнений 2 x + 3 y + z – 1 = 0 2 3 x + y + 1 3 z + 4 = 0 не имеет решений. Этим фактом доказывается, что плоскости 2 x + 3 y + z – 1 = 0 и 2 3 x + y + 1 3 z + 4 = 0 являются параллельными.

Отметим, что, если бы мы применили для решения системы линейных уравнений метод Гаусса, это дало бы тот же результат.

Ответ: заданные плоскости параллельны.

Необходимое и достаточное условие параллельности плоскостей возможно описать по-другому.

Чтобы две несовпадающие плоскости α и β были параллельны друг другу необходимо и достаточно, чтобы нормальные векторы плоскостей α и β являлись коллинеарными.

Доказательство сформулированного условия базируется на определении нормального вектора плоскости.

Допустим, что n 1 → = ( A 1 , B 1 , C 1 ) и n 2 → = ( A 2 , B 2 , C 2 ) являются нормальными векторами плоскостей α и β соответственно. Запишем условие коллинеарности данных векторов:

n 1 → = t · n 2 ⇀ ⇔ A 1 = t · A 2 B 1 = t · B 2 C 1 = t · C 2 , где t – некое действительное число.

Таким образом, чтобы несовпадающие плоскости α и β с заданными выше нормальными векторами были параллельны, необходимо и достаточно, чтобы имело место действительное число t , для которого верно равенство:

n 1 → = t · n 2 ⇀ ⇔ A 1 = t · A 2 B 1 = t · B 2 C 1 = t · C 2

В прямоугольной системе координат трехмерного пространства заданы плоскости α и β . Плоскость α проходит через точки: A ( 0 , 1 , 0 ) , B ( – 3 , 1 , 1 ) , C ( – 2 , 2 , – 2 ) . Плоскость β описывается уравнением x 12 + y 3 2 + z 4 = 1 Необходимо доказать параллельность заданных плоскостей.

Решение

Удостоверимся, что заданные плоскости не совпадают. Действительно, так и есть, поскольку координаты точки A не соответствуют уравнению плоскости β .

Следующим шагом определим координаты нормальных векторов n 1 → и n 2 → , соответствующие плоскостям α и β . Также проверим условие коллинеарности этих векторов.

Вектор n 1 → можно задать, взяв векторное произведение векторов A B → и A C → . Их координаты соответственно: ( – 3 , 0 , 1 ) и ( – 2 , 2 , – 2 ) . Тогда:

n 1 → = A B → × A C → = i → j → k → – 3 0 1 – 2 1 – 2 = – i → – 8 j → – 3 k → ⇔ n 1 → = ( – 1 , – 8 , – 3 )

Для получения координат нормального вектора плоскости x 12 + y 3 2 + z 4 = 1 приведем это уравнение к общему уравнению плоскости:

x 12 + y 3 2 + z 4 = 1 ⇔ 1 12 x + 2 3 y + 1 4 z – 1 = 0

Таким образом: n 2 → = 1 12 , 2 3 , 1 4 .

Осуществим проверку, выполняется ли условие коллинеарности векторов n 1 → = ( – 1 , – 8 , – 3 ) и n 2 → = 1 12 , 2 3 , 1 4

Так как – 1 = t · 1 12 – 8 = t · 2 3 – 3 = t · 1 4 ⇔ t = – 12 , то векторы n 1 → и n 2 → связаны равенством n 1 → = – 12 · n 2 → , т.е. являются коллинеарными.

Ответ: плоскости α и β не совпадают; их нормальные векторы коллинеарные. Таким образом, плоскости α и β параллельны.

Параллельные плоскости, признак и условия параллельности плоскостей.

Эта статья посвящена параллельным плоскостям и параллельности плоскостей. Сначала дано определение параллельных плоскостей, введены обозначения, приведены примеры и графические иллюстрации. Далее приведен признак параллельности плоскостей и теоремы, позволяющие доказывать параллельность плоскостей. В заключении рассмотрены необходимые и достаточные условия параллельности плоскостей, которые заданы в прямоугольной системе координат в трехмерном пространстве, а также подробно разобраны решения примеров.

Навигация по странице.

  • Параллельные плоскости – основные сведения.
  • Параллельность плоскостей – признак и условия параллельности.

Параллельные плоскости – основные сведения.

Дадим определение параллельных плоскостей.

Две плоскости называются параллельными, если они не имеют общих точек.

Для обозначения параллельности используется символ «». Таким образом, если плоскости и параллельны, то можно кратко записать .

Обычно две параллельные плоскости на чертеже изображаются в виде одинаковых параллелограммов, смещенных относительно друг друга.

Отметим, что если плоскости и параллельны, то также можно сказать, что плоскость параллельна плоскости , или плоскость параллельна плоскости .

Представление о параллельных плоскостях позволяют получить, к примеру, плоскость потолка и пола. Противоположные грани куба лежат в параллельных плоскостях.

Параллельность плоскостей – признак и условия параллельности.

При решении геометрических задач часто встает вопрос: «параллельны ли две заданные плоскости»? Для ответа на него существует признак параллельности плоскостей, который представляет собой достаточное условие параллельности плоскостей. Сформулируем его в виде теоремы.

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым, лежащим в другой плоскости, то такие плоскости параллельны.

С доказательством этого признака параллельности плоскостей Вы можете ознакомиться на страницах учебника геометрии за 10 – 11 классы, который указан в конце статьи в списке рекомендованной литературы.

На практике для доказательства параллельности плоскостей также часто используются две следующие теоремы.

Если одна из двух параллельных плоскостей параллельна третьей плоскости, то другая плоскость либо тоже параллельна этой плоскости, либо совпадает с ней.

Если две несовпадающие плоскости перпендикулярны некоторой прямой, то они параллельны.

На основании приведенных теорем и признака параллельности плоскостей доказывается параллельность любых двух плоскостей.

Теперь подробно остановимся на необходимом и достаточном условии параллельности двух плоскостей и , которые заданы в прямоугольной системе координат в трехмерном пространстве.

Пусть в прямоугольной системе координат Oxyz плоскости соответствует общее уравнение плоскости вида , а плоскости – вида . (Если плоскости заданы уравнениями плоскостей в отрезках, то от них легко перейти к общим уравнениям плоскостей.)

Для параллельности плоскостей и необходимо и достаточно, чтобы система линейных уравнений вида не имела решений (была несовместна).

Если плоскости и параллельны, то по определению они не имеют общих точек. Следовательно, не существует ни одной точки в прямоугольной системе координат Oxyz в трехмерном пространстве, координаты которой удовлетворяли бы одновременно обоим уравнениям плоскостей. Поэтому, система уравнений не имеет решений.

Если система линейных уравнений не имеет решений, то не существует ни одной точки в прямоугольной системе координат Oxyz в трехмерном пространстве, координаты которой удовлетворяют одновременно обоим уравнениям системы. Следовательно, плоскости и не имеют ни одной общей точки, то есть, они параллельны.

Рассмотрим применение необходимого и достаточного условия параллельности плоскостей.

Параллельны ли плоскости и ?

Составим систему уравнений из заданных уравнений плоскостей. Она имеет вид . Выясним, имеет ли эта система линейных уравнений решения (при необходимости смотрите статью решение систем линейных алгебраических уравнений).

Ранг матрицы равен одному, так как все миноры второго порядка равны нулю. Ранг матрицы равен двум, так как минор отличен от нуля. Итак, ранг основной матрицы системы уравнений меньше ранга расширенной матрицы системы. При этом из теоремы Кронекера-Капелли следует, что система уравнений не имеет решений. Этим доказано, что плоскости и параллельны.

Заметим, что использование метода Гаусса для решения системы линейных уравнений привело бы нас к этому же результату.

Необходимое и достаточное условие параллельности плоскостей можно сформулировать иначе.

Для параллельности двух несовпадающих плоскостей и необходимо и достаточно, чтобы нормальный вектор плоскости и нормальный вектор плоскости были коллинеарны.

Доказательство этого условия основано на определении нормального вектора плоскости.

Пусть и – нормальные векторы плоскостей и соответственно. Условие коллинеарности векторов и записывается как , где t – некоторое действительное число.

Таким образом, для параллельности несовпадающих плоскостей и , нормальными векторами которых являются векторы и соответственно, необходимо и достаточно, чтобы существовало действительное число t , для которого справедливо равенство .

Известно, что в прямоугольной системе координат Oxyz в трехмерном пространстве плоскость проходит через три точки , а плоскость определяется уравнением . Докажите параллельность плоскостей и .

Сначала убедимся, что плоскости и не совпадают. Это действительно так, так как координаты точки А не удовлетворяют уравнению плоскости .

Теперь найдем координаты нормальных векторов и плоскостей и и проверим выполнение условия коллинеарности векторов и .

В качестве вектора можно взять векторное произведение векторов и . Векторы и имеют координаты и соответственно (при необходимости смотрите статью нахождение координат вектора по координатам точек его начала и конца). Тогда .

Чтобы определить координаты нормального вектора плоскости приведем ее уравнение к общему уравнению плоскости: . Теперь видно, что .

Проверим выполнение условия коллинеарности векторов и .

Так как , то векторы и связаны равенством , то есть, они коллинеарны.

Итак, плоскости и не совпадают, а их нормальные векторы коллинеарны, следовательно, плоскости и параллельны.

Замечание: разобранное необходимое и достаточное условие не очень удобно для доказательства параллельности плоскостей, так как отдельно приходится доказывать, что плоскости не совпадают.

Параллельность плоскостей — способы, модели и примеры решения и построения

Для описания плоскостей используются различные формулы. Они дают возможность определить параллельность, высоту и характеристики пространственных углов. Пользуясь специальными уравнениями, можно узнать основные свойства геометрических объектов и понять, как решать задачи.

Понятие в геометрии

Условия параллельности плоскостей изучают в школе. Но перед этим важно изучить:

  • координаты;
  • векторы;
  • точки;
  • прямые;
  • углы.

Существование прямых легче изучать при выполнении заданий по теории. Они бывают:

  • параллельными;
  • непараллельными.

При этом в условиях прописываются требования к построению соответствующих линий. Из курса начертательной геометрии известно, что 2 прямые в пространстве способны пересекаться, скрещиваться либо быть параллельными.

Плоскость не принято рассматривать в двухмерной геометрии. Это объясняется необходимостью решать задачи только в координатах X и Y. Если к ним прибавляется очередная координатная ось Z, плоскость превращается в ключевой геометрический элемент. Известно, что противоположные грани параллелепипеда равны и параллельны.

Плоскость представляет собой совокупность точек. Если соединить любые 2 из них, то сформируется вектор. Он будет располагаться в неизменно перпендикулярном положении по отношению к любому произвольному вектору. Этот вектор называется нормалью. Она очень важна при составлении численного описания пространства. Её характеристики задействуются для решения разных задач.

Векторы считаются равными, когда они сонаправлены и имеют одинаковую длину.

Одинаково направленные стороны лежат в параллельных плоскостях. Это отрезки прямых, имеющих параллельное расположение и заключённых в параллельных пространствах. При наличии 1 общей точки у плоскостей их пересечение происходит по прямой, проходящей через эту координату. Если 2 из них параллельны по отношению к третьей, то они являются параллельными и между собой. В уроке геометрии за 10 класс приводится несколько сравнительных формул:

Вид общего уравнения

Определение, представленное в отношении плоскости, помогает составить равенство для пространства, которое имеет координаты. Например, точка определяется за счет таких данных Q (x0; y0; z0). Она находится в определенном пространстве. Нормаль имеет параметры n (A; B; C). Далее берётся любая область М (x; y; z). Она также находится в указанном пространстве. Это значит, что векторы QM и n будут находиться в перпендикулярном положении. При этом обнуляется их скалярное произведение. Формируется равенство (QM *n) = 0.

В это уравнение можно подставить координаты. Далее, раскрыв скобки, удается прийти к следующей схеме:

Указанное уравнение — общее. По форме оно является сходным со схемой, предусмотренной в отношении прямой на плоскости. Если обратить внимание на расположенные перед переменными X, Y и Z коэффициенты, становится понятно, что это координаты, принятые в отношении перпендикулярной плоскости вектора. Его именуют направляющим.

При нахождении общего уравнения составителю остаётся неизвестной точка Q. Есть лишь направляющий вектор n. В этом случае выявляется значение для всех имеющихся параллельных плоскостей. Они различаются исключительно по параметру D.

Схема в отношении отрезков

Определение параллельных плоскостей производится в зависимости от исходных данных. Показатели, соответствующие областям ее соприкосновения с X, Y и Z, можно обнаружить через специальное равенство. Его именуют уравнением в отрезках.

Для выявления параметра придётся провести ряд математических подсчетов и изменений в отношении общего равенства. Допустим, оно выглядит так:

После перемещения свободного компонента D в правую область обе части равенства следует разделить таким образом, чтобы получить на выходе единицу. Как это выглядит в итоге:

Такая формула обозначается как уравнение в отрезках. Протяженность отрезков, которые отходят в точках x, y и z, соответственно, имеют обозначения p, q и r, с координаты (0; 0; 0). Чтобы проверить это равенство, можно прибегнуть к следующему способу. Допустим, значение координат в точках y и z соответствует нулю. Это означает, что x соответствует q.

Таким образом, область соприкосновения с осью абсцисс соответствует координатам, равным (p; 0; 0). Если рассуждать точно так же, можно заполучить необходимые показатели в отношении двух остальных точек:

В школьных задачах часто предписывается выяснить, принадлежит ли плоскости середина того или иного отрезка, например, с условным обозначением АВ.

Параметрическое векторное выражение

Допустим, есть 2 компланарных вектора. Они не располагаются параллельно. Их обозначают так:

Также необходимо взять определённую точку:

Она известна. Определить, как будет выглядеть выражение плоскости, проходящей через указанные два вектора и точку, можно, если вспомнить, что всякий вектор допускается раскладывать на 2 дополнительных компланарных вектора. Они аналогичным образом относятся к этому пространству. Это говорит о том, что можно представить любой вектор QP, где P (x; y; z), как QP = *u + *v.

При прохождении всех точек P в пространстве можно определить показатели α и β. Это выражение, приведенное для плоскости, носит название параметрического векторного. Его лучше записывать с указанием координат:

Такой вид записи плоскости соответствует векторному уравнению, которое принято для прямой в 2- и 3-мерном случаях. Есть и более явные способы отобразить уравнения. Для этого достаточно создать разделение между переменными:

Все приведенные уравнения записываются в форме, соответствующей параметрическому уравнению для расположенной в пространстве прямой. Схема регулярно применяется с целью преобразования векторного выражения в общее.

Параллельные друг другу

В этом пункте будут рассмотрены условия, при которых плоскости параллельны. Допустим, есть два выражения:

В дальнейшем рассматриваются векторы, расположенные перпендикулярно в отношении каждой плоскости. Их координаты такие:

Вектор n1 можно вообразить в форме умножения на действительный показатель вектора n2. В такой ситуации оба они окажутся в параллельном положении. Получится следующее уравнение: n2 = l*n1. l — действительное число. Дополнительный метод выявления параллельности состоит в обнаружении косинуса угла, который имеется между ними. Для этого используются модули векторов и скалярное произведение. Важно, чтобы косинус соответствовал единице. В этом случае вектора будут располагаться параллельно. Получится такое выражение:

Если уже дано уравнение параметрической векторной, то ориентируются на параллельность нормальной по отношению к области пространств. Определить направляющие вектора указанных нормалей можно, если рассматривать векторные произведения векторов, составляющих каждую из плоскостей.

Взаимное расположение

Важно умение выявить двугранный угол точки соприкосновения. Он в любом случае соответствует углу между направляющими векторами. Раскрыть формулы для подсчета угла между нормалями можно посредством координат векторов n1 и n2:

Такая формула находит применение при подсчете значения двугранных углов между плоскостями наклонной призмы, а также пирамиды. В некоторых случаях рассматривается пересечение 2 плоскостей под углом 90°. Здесь имеет место перпендикулярное расположение геометрических фигур.

Чтобы определить их перпендикулярность, необязательно ориентироваться на подсчеты в отношении угла. Приходится пользоваться довольно громоздкими уравнениями. Легче воспользоваться скалярным произведением n1 и n2, которое равно нулю в случае с перпендикулярными плоскостями. Схематически это можно отобразить так:

Зная все эти формулы, можно определить свойства параллельных плоскостей.

Взаимное расположение плоскостей

Параллельные плоскости

Получим условия параллельности или совпадения двух плоскостей и заданных общими уравнениями:

Необходимым и достаточным условием параллельности или совпадения плоскостей (4.23) является условие коллинеарности их нормалей Следовательно, если плоскости (4.23) параллельны или совпадают, то т.е. существует такое число что

Плоскости совпадают, если помимо этих условий справедливо Тогда первое уравнение в (4.23) имеет вид т.е. равносильно второму, поскольку

Таким образом, плоскости (4.23) параллельны тогда и только тогда, когда соответствующие коэффициенты при неизвестных в их уравнениях пропорциональны, т.е. существует такое число что но Плоскости (4.23) совпадают тогда и только тогда, когда все соответствующие коэффициенты в их уравнениях пропорциональны: и

Условия параллельности и совпадения плоскостей (4.23) можно записать в виде

Отсюда следует критерий параллельности или совпадения двух плоскостей (4.23):

Поверхности уровня линейного четырехчлена

Поверхностью уровня функции трех переменных называется геометрическое место точек координатного пространства в которых функция принимает постоянное значение, т.е.

Для линейного четырехчлена уравнение поверхности уровня имеет вид

При любом фиксированном значении постоянной уравнение (4.24) описывает плоскость. Рассмотрим поведение семейства поверхностей уровня, отличающихся значением постоянной. Поскольку коэффициенты и не изменяются, то у всех плоскостей (4.24) будет одна и та же нормаль Следовательно, поверхности уровня линейного четырехчлена D представляют собой семейство параллельных плоскостей (рис.4.19). Поскольку нормаль совпадает с градиентом (см. пункт 3 замечаний 4.2), а градиент направлен в сторону наискорейшего возрастания функции, то при увеличении постоянной поверхности уровня (4.24) переносятся параллельно в направлении нормали.

Пересекающиеся плоскости

Необходимым и достаточным условием пересечения двух плоскостей (4.22) является условие неколлинеарности их нормалей, или, что то же самое, условие непропорциональности коэффициентов при неизвестных:

При этом условии система уравнений

имеет бесконечно много решений, которые определяют прямую пересечения плоскостей, заданных уравнениями (4.23).

Угол между плоскостями

Угол между двумя плоскостями можно определить как угол между их нормальными векторами. По этому определению получаются не один угол, а два смежных угла, дополняющих друг друга до В элементарной геометрии из двух смежных углов, как правило, выбирается меньший, т.е. величина угла между двумя плоскостями удовлетворяет условию

Если — нормали к плоскостям и соответственно (рис.4.20,а), то величина угла между этими плоскостями вычисляется по формуле:

Необходимым и достаточным условием перпендикулярности плоскостей (4.23) является условие ортогональности их нормалей, т.е.

При пересечении двух плоскостей образуются четыре двугранных угла (рис.4.20). Величина двугранного угла удовлетворяет условию

получаем острый двугранный угол , образованный плоскостями (4.23), если 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAOQAAAAUCAMAAACqG2GmAAAAM1BMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbQS4qAAAAEHRSTlMA2+pwDT6+X6AdLK9Qy49/usJWAwAAA2ZJREFUWMPlV9mCpCAMlDPc8P9fuxwRBNF153GHF7ujhlSlkuBx/K7FzYNd/0cgrd/bpf/qgam6LFtoAbTH73QZ5RMJXMvZrKOk1JrDmo9u+PxfJLJ9zqXPIAXQxADAp7DYSbXLpD6KyiYlDg6S2Mkek3XZnbf0kxtHlZcTsT6l7X7kAXy+JVaLboRwmpZblOAesA1m4dsQ0t63Kc7Q2+ss2U+clyjUNXoWaOKbJ2Pcgy+Q1D3rEcG4ZbuAQbOdI6UXXimqkU1k9bfNzY1j/KH+xIVXTnLKNiWjSU6L/goytKB0onyRGWCGzQeQsmMQV1le8nd3AzKsUfJaHPxSIgGyb7HZ3x0kmafmsFp8FYP2ZPEkK0/cUrdveXqWQ6fIXNR6rYGdWp1fYJoGb1SbkUUN9xCEPPbg6011446GvPwqphxftUe+d+Sn6Oy+PbHH3jCCVWaqkQayq0GWEkWVXOYi96bYm9ac+RtIl6wQAjzuJcZ2stilqhYh+CtIupCtNWKfW7bbUC+sHVZAkGdLcVJrHWrXAEXhMviyvdU7sEi7eDSUFWW9uEtJQi9JE7wcScCSpPrggUlixnApi7B60SiHUR78Eo8f3SabRWDEboRhrDSd8imTnMi8SKVKawKj6zR7AZdzCn33B5Bn6yrNlee5PQSosTQhd/Gcq15TbguSX4pe8wRLx+ay9gqza9U6ELfIFVUeGIqthdpBKmitMZQsFK/wKleckmcTHSBxSh6ldUS/zK6bXEeja/LGXVXHxPIPWbgKm3OSu4TTuqvE2XtWzgxS+Ku2Cwv6FSRg1cTGVgeJlGbVypYjot5AhhMNNNIR5JmDrEiOIOAm1cni/ZiphsTpXHeCFIShd4x27ZorSFUFlWu7YekgW6nqmBCMI/wNZD4LiNYQ+BXkmUqHTB3BPjcdJD1LIlBd1ZFq0ZVrbS3kHNypeNXlSlkX9SNIWR/M66QTQSq0J3meV6R+7a4HV/lsrnpWesJioirIcw65CaObxwfSQKIi+/lHYP+JwQ4j3kfIciCU+3NSHv3wCjI/42B8PwxVcgd9/JTNhxsXtqcyA/AwmvcgQTKmxBLKD0ByHxksJxbG3/xsD/XGMxbjT78qwSai7puaVNY/fD6bLFO7YUEVP+q7n1jiuSux1MD+k+a3rj+cGyJvT1X7swAAAABJRU5ErkJggg==” style=”vertical-align: middle;” /> (рис.4.20,а), и тупой в противном случае: (рис.4.20,б). Другими словами, по формуле (4.26) находится тот двугранный угол, образованный плоскостями, в котором лежат точки, принадлежащие разноименным полупространствам, определяемым данными плоскостями. На рис.4.20 изображены пересекающиеся плоскости, положительные и отрицательные полупространства отмечены знаками + или – соответственно.

Пример 4.10. Найти величину того угла, образованного плоскостями и внутри которого лежит точка

Решение. По уравнениям плоскостей находим нормали а также величину угла между нормалями, используя (4.26):

Подставляя координаты точки в левые части уравнений плоскостей, выясняем, каким полупространствам принадлежит эта точка. Для плоскости имеем 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAN8AAAARBAMAAACvNWTbAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMAYP4P3segIFPuP7ONfi1w1Fgf5QAAAqVJREFUOMtjYKA7KAAjCDBGYkMA3wMEm/0BhmZhJFl0uXcYqu3AZOa2nQdgIk1hOwNQlDC6uS6AsblcZ15AM4FRHc60SkGTE02NQBPhcfMBUUlKjnChT0pzDFDUrHzAqgFjlxZw60DtgQlVwi3kmT0FLWjmMQShhchJg0qQ13KWI4R+r0O1j+HSBjYdGPtmA5cSRJoFJrQF4UMGF1Sd/NoMh0DG8zbARJjnMvAqA+l8JFXf0EP9dQPCh5cSGCYtQLGQMQ23hXw7GIJAMcB+FBbPjIoMjCDD8qsQ6eSbFUa6MHKGsewLGCYVoFhYaobbQqCPVMCqma9+hvB5tRg4dIF0aqw3PBxbYrag2VjojZRs+VQZUCzcxYbHQnaRcKjFXy9DohlooRqQTmOw3AASBoktNWCbjqqtZyvYBRAnsc5DsZDxAMRCA6wWMp6Gp1KR4yCSDWohmAXMEQkQZaA0wigIApDY5p4FsgnijJ8LIJKSgoISQJapAdhCqCkQC8E6JSD2JMHTS+thJAsfMLDpAykhkDcfgxIXqoWMKiAL9UBMDj8QaQi2UBDIyl21WgPoBA5tHBY2OcAsXL0dGqS6YPeBLeQDBaumAb82SrhcM+BSAkYiMzgilz7gf4AcpKmhkaoJYCdjCVLedIZFsBju3gXOKIqghAqylFsPlq5UGfh1UBKakgCjJjzJhDOwPkDNh6y4Ew2TIkOTArTMyYOkIl0GXqB6dj+GlxtgqnYwmDqjaAs1YNOFFytTXJwMiLaQNZjh0AVIIj0OKyYYTEA2LcmZBs8WpTmuqNmidE8SvKBNUlJCyxY8kzRhRS+jp9IUAZRcEX1MB5INL8OETONDQTaxdyDsYG5cjJa4F/ZhqWBYiKmFuCTA5vJ+Rgg1LiCzRuOnoDYEAJ1BjPvu16j0AAAAAElFTkSuQmCC” style=”vertical-align: middle;” /> значит, точка лежит в положительном полупространстве, определяемом плоскостью Для плоскости имеем 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAMYAAAARBAMAAAB0js75AAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAYQ6sm+EgQMJ68VMw0spZRHUAAAJySURBVDjLvZXNa9RAGMafzWa/SJBOD3oQlhSsiMqyUAUtKBVq/QDFr9iDCKs9KIJSxc+DotVCW3sI0kK9iEqVirisgngQS0EQW6EsiBcV6bpL17aav8HMTCbZGbrrzRySd57MvL/MM+9MgP9yfQjDHGDJLzcqbVk4qebSmlSFdXn99WAg7Nw05Eg91hwv5yQh9WJiKmhMd6sZU3OKcGnbMJDo034UhLLfPeZH/vfcxWSRRxf4YwQzT0XvM/1VP9ogpBmFkVjCZgt6N9IHhLTjsoi4ZJYRK3Ghiz8mrFQlyBAVjB5hVT9jXAv81IuYbUJ0AZmfQtoFmZFYtPSKxMhPGX/qM1JjjBEZFAavzyKTRbwZmYcB41ROYuAN9AWJ8QlGuT7j4zrulXHHz3OuAytYqnRWDNq99bAlMYDW3xLDm36pPmM46a9Hoo1Xxg2foX2heTUq7aGTkxlpR2HMsh7WcoyUIxgw23rZaI9BJf07bbUzDUk67CUhjwhhpWU+o/fzhAwSspIt62d6jx0KGS2EjBGyyotOI2DA3EJnMukx6EqMMu+20wLu5U5wRjOVzzoKI8qm0fo4ZJxgjNVedOvK9arYPfF9hdArow/3vNZaWg8V6EuSV9o3TMtedUKnem45rwYGhn511CJoUWVuAletwPxICcl5iREt4L7E0B28r7/miM0Jp/gmTnr7w0HiiW0XxfyO0mKrZbTb9nOJ8cC2x//NMPiKe19dxd4ckq7rBrX7rnNcqt2I93K+lqF5QlC7sbx7RGZE84s0l3E7ONNGR9QzLf5W2YPh1dXo6O6RmxfDc9QkVt1Rjiq8asRoafjz+Avab6T1GhuezwAAAABJRU5ErkJggg==” style=”vertical-align: middle;” /> значит, точка лежит также в положительном полупространстве, определяемом плоскостью Поскольку точка принадлежит одноименным полупространствам (положительным), то искомый угол — это угол смежный найденному углу

Пучки плоскостей

Собственным пучком плоскостей называется совокупность всех плоскостей, проходящих через фиксированную прямую ( ось пучка ).

Несобственным пучком плоскостей называется совокупность плоскостей, параллельных фиксированной плоскости (осью несобственного пучка плоскостей считается бесконечно удаленная прямая).

Любые две плоскости и определяют пучок плоскостей, содержащий заданные плоскости и Если плоскости и пересекаются, то прямая пересечения является осью собственного пучка (рис.4.21,а). Если плоскости и параллельны, то они определяют несобственный пучок параллельных плоскостей (рис.4.21,б).

Пусть заданы уравнения двух плоскостей (4.23):

Линейной комбинацией этих уравнений называется уравнение

где числа — коэффициенты линейной комбинации. Его можно записать в форме

Заметим, что линейная комбинация уравнений является уравнением первой степени для любых значений коэффициентов, кроме случая, когда все коэффициенты при неизвестных равны нулю, т.е. при одновременном выполнении условий

Эти значения параметров считаются недопустимыми.

Уравнение (4.27) называется уравнением пучка плоскостей, содержащего плоскости

При любых допустимых значениях параметров уравнение (4.27) задает плоскость, принадлежащую пучку, и наоборот, для любой плоскости пучка найдутся такие значения параметров что уравнение (4.27) будет задавать эту плоскость.

Доказательство утверждения аналогично доказательству свойства пучка прямых.

Пример 4.11. Составить уравнение плоскости, проходящей через прямую пересечения плоскостей и через точку

Решение. Искомая плоскость входит в пучок плоскостей, задаваемый уравнением (4.27)

Подставляя координаты точки получаем:

Возьмем, например, и подставим в уравнение пучка:

Итак, искомое уравнение получено.

Связки плоскостей

Собственной связкой плоскостей называется совокупность всех плоскостей, проходящих через фиксированную точку ( центр связки ).

Несобственной связкой плоскостей называется совокупность плоскостей, параллельных фиксированной прямой (центром несобственной связки плоскостей считается бесконечно удаленная точка).

Уравнение собственной связки плоскостей с центром имеет вид

где — произвольные параметры, одновременно не равные нулю.

Уравнение связки плоскостей (собственной (рис.4.22,а) или несобственной (рис.4.22,6)) можно получить в виде линейной комбинации уравнений трех плоскостей:

где — коэффициенты линейной комбинации. Заметим, что линейная комбинация уравнений является уравнением первой степени для любых значений коэффициентов, кроме случая, когда все коэффициенты при неизвестных равны нулю. Эти значения параметров считаются недопустимыми.

Уравнение (4.28) называется уравнением связки плоскостей, содержащей три плоскости

При любых допустимых значениях параметров уравнение (4.28) задает плоскость, принадлежащую связке, и наоборот, для любой плоскости связки найдутся такие значения параметров что уравнение (4.28) будет задавать эту плоскость.

Доказательство утверждения аналогично доказательству свойства пучка прямых.

Взаимное расположение плоскостей: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке

Угол между двумя плоскостями, условия параллельности и перпендикулярности плоскостей

Пусть две плоскости и заданы общими уравнениями и .

Вопрос об определении угла между ними сводится к определению угла между векторами нормалей к ним

и .

Из определения скалярного произведения и из выражения в координатах длин векторов и и их скалярного произведения получим

Условие параллельности плоскостей и эквивалентно условию коллинеарности векторов и и заключается в пропорциональности координат этих векторов:

.

Условие перпендикулярности плоскостей и может быть выражено равенством нулю скалярного произведения векторов нормалей к ним и :

.

Пример 1. Установить, параллельны ли две плоскости, одна из которых задана уравнением , а другая – уравнением .

Решение. Составим уравнения коэффициентов уравнений плоскостей:

Так как , то коэффициенты пропорциональны, следовательно данные две плоскости параллельны.

Пример 2. Установить, перпендикулярны ли плоскости, заданные уравнениями и .

Решение. Плоскости перпендикулярны в том случае, когда векторы и нормалей к ним перпендикулярны и удовлетворяют условию равенства нулю их скалярного произведения. Так как , то указанное условие выполнено и, значит, данные плоскости перпендикулярны.

Условие пересечения трёх плоскостей в одной точке, точка пересечения

Необходимым и достаточным условием того, что три плоскости имеют только одну общую точку (то есть, пересекаются в этой точке), является условие неравенства нулю определителя, составленного из коэффициентов уравнений:

Это условие совпадает с условием того, что система линейных уравнений имеет одно единственное решение (пройдя по ссылке можно увидеть иллюстрацию как раз на примере плоскостей).

Решение системы общих уравнений плоскостей (если оно существует и единственное) и даёт точку пересечения трёх плоскостей.

Пример 3. Установить, пересекаются ли три плоскости в одной точке, если пересекаются, найти точку пересечения. Плоскости заданы уравнениями:

Решение. Сначала проверим, выполняется ли условие пересечения плоскостей в одной точке. Для этого установим, отличен ли от нуля определитель системы:

Определитель отличен от нуля, следовательно система уравнений имеет единственное решение, а, значит, три плоскости пересекаются в одной точке.

Для нахождения этой точки продолжим решать систему уравнений методом Крамера. Перенесём свободные члены в правые части уравнений:

Найдём определители при неизвестных:

Нетрудно заметить, что по формулам Крамера (определитель при неизвестной делить на определитель системы) все неизвестные оказались равными единице. Таким образом, получили точку пересечения трёх плоскостей:

Для проверки решения подобных задач целесообразно воспользоваться калькулятором, решающим системы уравнений методом Крамера.

Пример 4. Установить, пересекаются ли три плоскости в одной точке, если пересекаются, найти точку пересечения. Плоскости заданы уравнениями:

Решение. Проверим, пересекаются ли плоскости в одной точке. Для этого вычислим определитель системы:

Определитель равен нулю, следовательно, данные три плоскости не пересекаются в одной точке.

Для проверки решения подобных задач целесообразно воспользоваться калькулятором, решающим системы уравнений методом Крамера.

Уравнение плоскости, проходящей через данную точку и параллельной данной плоскости

Пусть даны точка и плоскость . Тогда уравнение плоскости, проходящей через данную точку, и параллельной данной плоскости, имеет вид

.

Пример 5. Составить уравнение плоскости, проходящей через точку (3, -5, 1) , и параллельной плоскости .

Решение. Подставляем в формулу, данную в теоретической сравке к этой главе, данные точки и другой плоскости. Получаем:

Последнее и есть искомое уравнение плоскости, проходящей через данную точку, и параллельной данной плоскости.

Введение в стереометрию. Параллельность

Важные аксиомы стереометрии

1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Таким образом, любая плоскость однозначно задается тремя точками, не лежащими на одной прямой: (pi=(ABC)) (рис. 1).

2. Если две точки прямой лежат в некоторой плоскости, то и вся прямая лежит в этой плоскости: (ain pi) .
Говорят также, что плоскость содержит прямую: (pisubset a) (рис. 2).

3. Если две плоскости имеют общую точку, то они имеют и общую прямую, на которой лежат все общие точки этих плоскостей.
Таким образом, если плоскости пересекаются, то они пересекаются по прямой: (picap mu=p) .
Данная прямая (p) называется линией пересечения плоскостей (рис. 3).

Заметим, что плоскость обычно изображают в виде внутренности параллелограмма. Почему? Посмотрите, например, сбоку на стол. В виде какой фигуры выглядит столешница?

Следствия из аксиом

1. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна (рис. 4).

2. Через две пересекающиеся прямые проходит плоскость, и притом только одна (рис. 5).

Доказательство

1. Действительно, отметим на прямой (a) некоторые две точки (A) и (B) . Тогда мы получим три точки (A, B, C) , не лежащие на одной прямой. Через них можно провести единственную плоскость (pi) . А т.к. две выбранные точки (A) и (B) прямой лежат в этой плоскости, то и вся прямая лежит в этой плоскости.

2. Действительно, пусть (O) – точка пересечения данных прямых (p) и (q) . Отметим еще по одной точке (P) и (Q) на каждой прямой (отличающиеся от точки (O) ). Получили три точки (P, Q, O) , не лежащие на одной прямой. Через них проходит единственная плоскость (pi) . А т.к. две точки каждой прямой лежат в этой плоскости, то и все точки каждой прямой будут лежать в этой плоскости.

Определения

Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.

Следствие 1

Через две параллельные прямые проходит плоскость, и притом только одна.

Теорема 1

Через любую точку (A) в пространстве, не лежащую на данной прямой (b) , проходит прямая (a) , параллельная данной, и притом только одна.

Доказательство

Через точку (A) и прямую (b) можно провести единственную плоскость (по аксиоме); пусть эта плоскость называется (pi) . Прямая (a) , параллельная прямой (b) , должна лежать с ней в одной плоскости, а также должна проходить через точку (A) , следовательно, должна лежать в плоскости (pi) . Но в плоскости через точку, не лежащую на прямой, можно провести ровно одну прямую, параллельную данной (теорема планиметрии), чтд.

Теорема 2

Если одна из двух параллельных прямых пересекает плоскость, то и другая прямая пересекает эту плоскость.

Доказательство

Пусть (aparallel b) и (acap pi=A) . Докажем, что и (b) пересечет плоскость (pi) (назовем их точку пересечения (B) ).

Проведем через прямые (a) и (b) плоскость (mu) (это возможно в силу определения параллельных прямых). Тогда плоскости (pi) и (mu) имеют общую точку (A) , следовательно, имеют и общую прямую (p) , на которой лежат все их общие точки. Но т.к. (bparallel a) и (acap p=A) , то прямая (b) тоже пересекает прямую (p) . Значит, прямая (b) пересекает и плоскость (mu) (это и есть точка (B) ).

Теорема 3: о параллельности трех прямых

Если прямая (a) параллельна прямой (b) , а та в свою очередь параллельна прямой (c) , то (aparallel c) .

Доказательство

1) Отметим некоторую точку (C) на прямой (c) и проведем плоскость (pi) через прямую (a) и точку (C) . Прямая (c) будет лежать в этой плоскости. Действительно, т.к. прямая (c) и плоскость (pi) имеют общую точку (C) , то в противном случае прямая (c) будет пересекать эту плоскость. Но т.к. (bparallel c) , то и прямая (b) будет пересекать (pi) ; а т.к. (aparallel b) , то и прямая (a) будет пересекать эту плоскость. А это противоречит нашему построению.

2) Теперь прямые (a) и (c) лежат в одной плоскости, значит, они могут либо пересекаться, либо быть параллельны. Предположим, что (c) пересекает (a) в точке (A) . Тогда получается, что через точку (A) проведены две прямые, параллельные прямой (b) , что противоречит теореме 1.

Определение

Существует три вида взаимного расположения прямой и плоскости:

1. прямая имеет с плоскостью две общие точки (то есть лежит в плоскости) — рис. 4;

2. прямая имеет с плоскостью ровно одну общую точку (то есть пересекает плоскость) — рис. 6;

3. прямая не имеет с плоскостью общих точек (то есть параллельна плоскости).

Теорема 4: признак параллельности прямой и плоскости

Если прямая (a) , не лежащая в плоскости (pi) , параллельна некоторой прямой (p) , лежащей в плоскости (pi) , то она параллельна данной плоскости (рис. 7).

Доказательство

Докажем, что прямая (a) не может пересекать плоскость (pi) (случай, что прямая лежит в плоскости, невозможен по условию). Предположим, что это не так. Во-первых, проведем плоскость (mu) через прямые (a) и (p) (значит, плоскости (pi) и (mu) пересекаются по прямой (p) ). Во-вторых, пусть (acappi=A) . Т.к. (aparallel p) , то точка (A) не может лежать на прямой (p) . Значит, плоскости (pi) и (mu) имеют еще одну общую точку (A) , не лежащую на их линии пересечения, что противоречит аксиоме 3. Чтд.

Следствие 2

Пусть прямая (p) параллельна плоскости (mu) . Если плоскость (pi) проходит через прямую (p) и пересекает плоскость (mu) , то линия пересечения плоскостей (pi) и (mu) — прямая (m) — параллельна прямой (p) (рис. 8).

Доказательство

Т.к. прямые (m) и (p) лежат в одной плоскости (pi) , то они могут быть либо параллельны, либо пересекаться, либо совпадать. Совпадать они не могут, потому что тогда (pin mu) , а это противоречит условию. Если (mcap p=O) , то (p) пересекает плоскость (mu) в точке (O) , что опять же противоречит условию. Значит, (mparallel p) .

Следствие 3

Если прямые (a) и (b) параллельны и прямая (a) также параллельна плоскости (alpha) , то и прямая (b) либо параллельна, либо лежит в плоскости (alpha) .

Определение

Существует три типа взаимного расположения плоскостей в пространстве: совпадают (имеют три общие точки, не лежащие на одной прямой), пересекаются (имеют общие точки, лежащие строго на одной прямой), и не имеют общих точек.

Если две плоскости не имеют общих точек, то они называются параллельными плоскостями.

Теорема 5: признак параллельности плоскостей

Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.

Доказательство

Рассмотрим две плоскости (pi) и (mu) и в них пересекающиеся прямые (a, b) и (a_1, b_1) соответственно, такие что (aparallel a_1, bparallel b_1) . Докажем, что плоскости не имеют общих точек.

Предположим, что это не так. Пусть плоскости имеют общую точку, значит они имеют и общую прямую (y) : (picap mu=y) . Данная прямая не может быть параллельна обеим прямым (a) и (b) (т.к. они все лежат в одной плоскости (pi) ), значит, хотя бы одну из этих прямых она пересекает. Пусть это будет прямая (a) , то есть (acap y=Y) . Т.к. прямая (y) лежит и в плоскости (mu) , то (Yin mu) , то есть прямая (a) имеет с плоскостью (mu) общую точку (Y) . Но это невозможно, т.к. по признаку параллельности прямой и плоскости прямая (a) параллельна плоскости (mu) . Чтд.

Следствие 4

Если две параллельные плоскости (alpha) и (beta) пересечены третьей плоскостью (gamma) , то линии пересечения плоскостей также параллельны:

[alphaparallel beta, alphacap gamma=a, betacapgamma=b Longrightarrow aparallel b]

Следствие 5

Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны:

[alphaparallel beta, aparallel b Longrightarrow A_1B_1=A_2B_2]

Ссылка на основную публикацию