Алгебраические выражения – виды, формулы и примеры

Алгебра. Урок 3. Вычисления и алгебраические выражения

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Преобразования и вычисления

Преобразования и вычисления

Свойства степеней:

(2) a m a n = a m − n

(3) ( a ⋅ b ) n = a n ⋅ b n

(4) ( a b ) n = a n b n

(5) ( a m ) n = a m ⋅ n

Свойства квадратного корня:

(1) a b = a ⋅ b , при a ≥ 0 , b ≥ 0

18 = 9 ⋅ 2 = 9 ⋅ 2 = 3 2

(2) a b = a b , при a ≥ 0 , b > 0

4 81 = 4 81 = 2 9

(3) ( a ) 2 = a , при a ≥ 0

(4) a 2 = | a | при любом a

( − 3 ) 2 = | − 3 | = 3 , 4 2 = | 4 | = 4 .

Рациональные и иррациональные числа

Рациональные числа – числа, которые можно представить в виде обыкновенной дроби m n где m – целое число ( ℤ = 0, ± 1, ± 2, ± 3 … ), n – натуральное ( ℕ = 1, 2, 3, 4 … ).

Примеры рациональных чисел:

1 2 ; − 9 4 ; 0,3333 … = 1 3 ; 8 ; − 1236.

Иррациональные числа – числа, которые невозможно представить в виде обыкновенной дроби m n , это бесконечные непериодические десятичные дроби.

Примеры иррациональных чисел:

Проще говоря, иррациональные числа – это числа, содержащие в своей записи знак квадратного корня. Но не всё так просто. Некоторые рациональные числа маскируются под иррациональные, например, число 4 содержит в своей записи знак квадратного корня, но мы прекрасно понимаем, что можно упростить форму записи 4 = 2 . Это означает, что число 4 есть число рациональное.

Аналогично, число 4 81 = 4 81 = 2 9 есть число рациональное.

В некоторых задачах требуется определить, какие из чисел являются рациональными, а какие иррациональными. Задание сводится к тому, чтобы понять, какие числа иррациональные, а какие под них маскируются. Для этого нужно уметь совершать операции вынесения множителя из-под знака квадратного корня и внесения множителя под знак корня.

Внесение и вынесение множителя за знак квадратного корня

При помощи вынесения множителя за знак квадратного корня можно ощутимо упростить некоторые математические выражения.

Упростить выражение 2 8 2 .

1 способ (вынесение множителя из-под знака корня): 2 8 2 = 2 4 ⋅ 2 2 = 2 4 ⋅ 2 2 = 2 ⋅ 2 = 4

2 способ (внесение множителя под знак корня): 2 8 2 = 2 2 8 2 = 4 ⋅ 8 2 = 4 ⋅ 8 2 = 16 = 4

Формулы сокращенного умножения (ФСУ)

(1) ( a + b ) 2 = a 2 + 2 a b + b 2

( 3 x + 4 y ) 2 = ( 3 x ) 2 + 2 ⋅ 3 x ⋅ 4 y + ( 4 y ) 2 = 9 x 2 + 24 x y + 16 y 2

(2) ( a − b ) 2 = a 2 − 2 a b + b 2

( 5 x − 2 y ) 2 = ( 5 x ) 2 − 2 ⋅ 5 x ⋅ 2 y + ( 2 y ) 2 = 25 x 2 − 20 x y + 4 y 2

Сумма квадратов не раскладывается на множители

(3) a 2 − b 2 = ( a − b ) ( a + b )

25 x 2 − 4 y 2 = ( 5 x ) 2 − ( 2 y ) 2 = ( 5 x − 2 y ) ( 5 x + 2 y )

(4) ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3

( x + 3 y ) 3 = ( x ) 3 + 3 ⋅ ( x ) 2 ⋅ ( 3 y ) + 3 ⋅ ( x ) ⋅ ( 3 y ) 2 + ( 3 y ) 3 = x 3 + 3 ⋅ x 2 ⋅ 3 y + 3 ⋅ x ⋅ 9 y 2 + 27 y 3 = x 3 + 9 x 2 y + 27 x y 2 + 27 y 3

(5) ( a − b ) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3

( x 2 − 2 y ) 3 = ( x 2 ) 3 − 3 ⋅ ( x 2 ) 2 ⋅ ( 2 y ) + 3 ⋅ ( x 2 ) ⋅ ( 2 y ) 2 − ( 2 y ) 3 = x 2 ⋅ 3 − 3 ⋅ x 2 ⋅ 2 ⋅ 2 y + 3 ⋅ x 2 ⋅ 4 y 2 − 8 y 3 = x 6 − 6 x 4 y + 12 x 2 y 2 − 8 y 3

(6) a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 )

8 + x 3 = 2 3 + x 3 = ( 2 + x ) ( 2 2 − 2 ⋅ x + x 2 ) = ( x + 2 ) ( 4 − 2 x + x 2 )

(7) a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 )

x 6 − 27 y 3 = ( x 2 ) 3 − ( 3 y ) 3 = ( x 2 − 3 y ) ( ( x 2 ) 2 + ( x 2 ) ( 3 y ) + ( 3 y ) 2 ) = ( x 2 − 3 y ) ( x 4 + 3 x 2 y + 9 y 2 )

Стандартный вид числа

Для того, чтобы понять, как приводить произвольное рациональное число к стандартному виду, надо знать, что такое первая значащая цифра числа.

Первой значащей цифрой числа называют его первую слева отличную от нуля цифру.

Примеры:
2 5 ; 3 , 05 ; 0 , 1 43 ; 0 , 00 1 2 . Красным цветом выделена первая значащая цифра.

Для того, чтобы привести число к стандартному виду, надо:

  1. Сдвинуть запятую так, чтобы она была сразу за первой значащей цифрой.
  2. Полученное число умножить на 10 n , где n – число, которое определяется следующим образом:
  3. n > 0 , если запятая сдвигалась влево (умножение на 10 n , указывает, что на самом деле запятая должна стоять правее);
  4. n 0 , если запятая сдвигалась вправо (умножение на 10 n , указывает, что на самом деле запятая должна стоять левее);
  5. абсолютная величина числа n равна количеству разрядов, на которое была сдвинута запятая.

25 = 2 , 5 ← ​ , = 2,5 ⋅ 10 1

Запятая сдвинулась влево на 1 разряд. Так как сдвиг запятой осуществляется влево, степень положительная.

Уже приведено к стандартному виду, делать ничего с ним не нужно. Можно записать, как 3,05 ⋅ 10 0 , но поскольку 10 0 = 1 , оставляем число в первоначальном виде.

0,143 = 0, 1 → , 43 = 1,43 ⋅ 10 − 1

Запятая сдвинулась вправо на 1 разряд. Так как сдвиг запятой осуществляется вправо, степень отрицательная.

− 0,0012 = − 0, 0 → 0 → 1 → , 2 = − 1,2 ⋅ 10 − 3

Запятая сдвинулась вправо на три разряда. Так как сдвиг запятой осуществляется вправо, степень отрицательная.

Задание №8 из ОГЭ 2020. Типовые задачи и принцип их решения.

Основные виды выражений в алгебре

Уроки алгебры знакомят нас с различными видами выражений. По мере поступления нового материала выражения усложняются. При знакомстве со степенями они постепенно добавляются в выражение, усложняя его. Также происходит с дробями и другими выражениями.

Чтобы изучение материала было максимально удобным, это производится по определенным названиям для того, чтобы можно было их выделить. Данная статья даст полный обзор всех основных школьных алгебраических выражений.

Одночлены и многочлены

Выражения одночлены и многочлены изучаются в школьной программе, начиная с 7 класса. В учебники были даны определения такого вида.

Одночлены – это числа, переменные, их степени с натуральным показателем, любые произведения, сделанные с их помощью.

Многочленами называют сумму одночленов.

Если взять, к примеру число 5 , переменную x , степень z 7 ,тогда произведения вида 5 · x и 7 · x · 2 · 7 · z 7 считаются одночленами. Когда берется сумма одночленов вида 5 + x или z 7 + 7 + 7 · x · 2 · 7 · z 7 , тогда получаем многочлен.

Чтобы отличать одночлен от многочлена, обращают внимание на степени и их определения. Немаловажно понятие коэффициента. При приведении подобных слагаемых их разделяют на свободный член многочлена или старший коэффициент.

Над одночленами и многочленами чаще всего выполняются какие-то действия, после которых выражение приводится к вижу одночлена. Выполняется сложение, вычитание, умножение и деление, опираясь на алгоритм для выполнения действий с многочленами.

Когда имеется одна переменная, не исключено деление многочлена на многочлен, которые представляются в виде произведения. Такое действие получило название разложение многочлена на множители.

Рациональные (алгебраические) дроби

Понятие рациональные дроби изучаются в 8 классе средней школы. Некоторые авторы называют их алгебраическими дробями.

Рациональной алгебраической дробью называют дробь, в которой на месте числителя и знаменателя выступают многочлены или одночлены, числа.

Рассмотрим на примере записи рациональных дробей типа 3 x + 2 , 2 · a + 3 · b 4 , x 2 + 1 x 2 – 2 и 2 2 · x + – 5 1 5 · y 3 · x x 2 + 4 . Опираясь на определение, можно сказать, что каждая дробь считается рациональной дробью.

Алгебраические дроби можно складывать, вычитать, умножать, делить, возводить в степень. Подробнее это рассматривается в разделе действий с алгебраическими дробями. Если необходимо преобразовать дробь, нередко пользуются свойством сокращения и приведения к общему знаменателю.

Рациональные выражения

В школьном курсе изучается понятие иррациональных дробей, так как необходима работа с рациональными выражениями.

Рациональные выражения считаются числовыми и буквенными выражениями, где используются рациональные числа и буквы со сложением, вычитанием, умножением, делением, возведением в целую степень.

Рациональные выражения могут не иметь знаков, принадлежащих функции, которые приводят к иррациональности. Рациональные выражения не содержат корней, степеней с дробными иррациональными показателями, степеней с переменными в показателе, логарифмических выражений, тригонометрических функций и так далее.

Основываясь на правиле, приведенном выше, приведем примеры рациональных выражений. Из выше сказанного определения имеем, что как числовое выражение вида 1 2 + 3 4 , так и 5 , 2 + ( – 0 , 1 ) 2 · 2 – 3 5 – 4 3 4 + 2 : 12 · 7 – 1 + 7 – 2 2 3 3 – 2 1 + 0 , 3 считаются рациональными. Выражения, содержащие буквенные обозначения, также относят к рациональным a 2 + b 2 3 · a – 0 , 5 · b , с переменными вида a · x 2 + b · x + c и x 2 + x y – y 2 1 2 x – 1 .

Все рациональные выражения подразделяют на целые и дробные.

Целые рациональные выражения

Целые рациональные выражения – это такие выражения, не содержащие деления на выражения с переменными отрицательной степени.

Из определения имеем, что целое рациональное выражение – это и выражение, содержащее буквы, например, а + 1 , выражение, содержащее несколько переменных, например, x 2 · y 3 − z + 3 2 и a + b 3 .

Выражения вида x : ( y − 1 ) и 2 x + 1 x 2 – 2 x + 7 – 4 не могут быть целыми рациональными, так как имеют деление на выражение с переменными.

Дробные рациональные выражения

Дробное рациональное выражение – это выражение, которое содержит деление на выражение с переменными отрицательной степени.

Из определения следует, что дробные рациональные выражения могу быть 1 : x , 5 x 3 – y 3 + x + x 2 и 3 5 7 – a – 1 + a 2 – ( a + 1 ) ( a – 2 ) 2 .

Если рассматривать выражения такого типа ( 2 · x − x 2 ) : 4 и a 2 2 – b 3 3 + c 4 + 1 4 , 2 , то дробными рациональными они не считаются, так как не имеют в знаменателе выражений с переменными.

Выражения со степенями

Выражения, которые содержат степени в любой части записи, называют выражениями со степенями или степенными выражениями.

Для понятия приведем пример такого выражения. В них могут отсутствовать переменные, например, 2 3 , 32 – 1 5 + 1 , 5 3 , 5 · 5 – 2 5 – 1 , 5 . Также характерны степенные выражения вида 3 · x 3 · x – 1 + 3 x , x · y 2 1 3 . Для того, чтобы решить их, необходимо выполнять некоторые преобразования.

Иррациональные выражения, выражения с корнями

Корень, имеющий место быть в выражении, дает ему иное название. Их называют иррациональными.

Иррациональными выражениями называют выражения, которые имеют в записи знаки корней.

Из определения видно, что это выражения вида 64 , x – 1 4 3 + 3 3 , 2 + 1 2 – 1 – 2 + 3 2 , a + 1 a 1 2 + 2 , x · y , 3 x + 1 + 6 x 2 + 5 x и x + 6 + x – 2 3 + 1 4 x 2 3 + 3 – 1 1 3 . В каждом из них имеется хотя бы один значок корня. Корни и степени связаны, поэтому можно видеть такие записи выражений, как x 7 3 – 2 5 , n 4 8 · m 3 5 : 4 · m 2 n + 3 .

Тригонометрические выражения

Тригонометрическое выражение – это выражения с содержанием sin , cos , tg и ctg и их обратные – arcsin , arccos , arctg и arcctg .

Примеры тригонометрических функций очевидны: sin π 4 · cos π 6 cos 6 x – 1 и 2 sin x · t g 2 x + 3 , 4 3 · t g π – arcsin – 3 5 .

Для работы с такими функциями необходимо пользоваться свойствами, основными формулами прямых и обратных функций. Статья преобразование тригонометрических функций раскроет этот вопрос подробней.

Логарифмические выражения

После знакомства с логарифмами можно говорить о сложных логарифмических выражениях.

Выражения, которые имеют логарифмы, называют логарифмическими.

Примером таких функций могут быть log 3 9 + ln e , log 2 ( 4 · a · b ) , log 7 2 ( x · 7 3 ) log 3 2 x – 3 5 + log x 2 + 1 ( x 4 + 2 ) .

Можно встретить такие выражения, где есть степени и логарифмы. Это итак понятно, так как из определения логарифма следует, что это является показателем степени. Тогда получаем выражения вида x l g x – 10 , log 3 3 x 2 + 2 x – 3 , log x + 1 ( x 2 + 2 x + 1 ) 5 x – 2 .

Для углубления изучения материала, следует обратиться к материалу о преобразовании логарифмических выражений.

Дроби

Существуют выражения особого вида, которые получили название дроби. Так как они имеют числитель и знаменатель, то они могут содержать не просто числовые значения, а также выражения любого типа. Рассмотрим определение дроби.

Дробью называют такое выражение, имеющее числитель и знаменатель, в которых имеются как числовые, так и буквенные обозначения или выражения.

Примеры дробей, которые имеют числа в числителе и знаменателе, выглядят так 1 4 , 2 , 2 – 6 2 7 , π 2 , – e π , ( − 15 ) ( − 2 ) . Числитель и знаменатель может содержать как численные, так и буквенные выражения вида ( a + 1 ) 3 , ( a + b + c ) ( a 2 + b 2 ) , 1 3 + 1 – 1 3 – 1 1 1 + 1 1 + 1 5 , cos 2 α – sin 2 α 1 + 3 t g α , 2 + ln 5 ln x .

Хотя такие выражения, как 2 5 − 3 7 , x x 2 + 1 : 5 не являются дробями, однако, имеют дробь в своей записи.

Выражение общего вида

Старшие классы рассматривают задачи повышенной трудности, где собраны все комбинированные задания группы С по ЕГЭ. Эти выражения отличаются особой сложностью и различными комбинациями корней, логарифмов, степеней, тригонометрических функций. Это задания типа x 2 – 1 · sin x + π 3 или sin a r c t g x – a · x 1 + x 2 .

Их вид говорит о том, что можно отнести к любому из вышеперечисленных видов. Чаще всего их не относят ни к какому, так как они имеют специфичное комбинированное решение. Их рассматривают как выражения общего вида, причем для описания не используются дополнительные уточнения или выражения.

При решении такого алгебраического выражения всегда необходимо обращать внимание на его запись, наличие дроби, степеней или дополнительных выражений. Это нужно для того, чтобы точно определиться со способом его решения. Если нет уверенности в его названии, то рекомендуется называть его выражением общего типа и решать, согласно выше написанному алгоритму.

6.4.1. Алгебраическое выражение

I. Выражения, в которых наряду с буквами могут быть использованы числа, знаки арифметических действий и скобки, называются алгебраическими выражениями.

Примеры алгебраических выражений:

2m -n; 3·(2a + b); 0,24x; 0,3a -b · (4a + 2b); a 2 – 2ab;

Так как букву в алгебраическом выражении можно заменить какими то различными числами, то букву называют переменной, а само алгебраическое выражение — выражением с переменной.

II. Если в алгебраическом выражении буквы (переменные) заменить их значениями и выполнить указанные действия, то полученное в результате число называется значением алгебраического выражения.

Примеры. Найти значение выражения:

1) a + 2b -c при a = -2; b = 10; c = -3,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6.

1) a + 2b -c при a = -2; b = 10; c = -3,5. Вместо переменных подставим их значения. Получим:

— 2+ 2 · 10- (-3,5) = -2 + 20 +3,5 = 18 + 3,5 = 21,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6. Подставляем указанные значения. Помним, что модуль отрицательного числа равен противоположному ему числу, а модуль положительного числа равен самому этому числу. Получаем:

|-8| + |-5| -|6| = 8 + 5 -6 = 7.

III. Значения буквы (переменной), при которых алгебраическое выражение имеет смысл, называют допустимыми значениями буквы (переменной).

Примеры. При каких значениях переменной выражение не имеет смысла?

Решение. Мы знаем, что на нуль делить нельзя, поэтому, каждое из данных выражений не будет иметь смысла при том значении буквы (переменной), которая обращает знаменатель дроби в нуль!

В примере 1) это значение а = 0. Действительно, если вместо а подставить 0, то нужно будет число 6 делить на 0, а этого делать нельзя. Ответ: выражение 1) не имеет смысла при а = 0.

В примере 2) знаменатель х — 4 = 0 при х = 4, следовательно, это значение х = 4 и нельзя брать. Ответ: выражение 2) не имеет смысла при х = 4.

В примере 3) знаменатель х + 2 = 0 при х = -2. Ответ: выражение 3) не имеет смысла при х = -2.

В примере 4) знаменатель 5 -|x| = 0 при |x| = 5. А так как |5| = 5 и |-5| = 5, то нельзя брать х = 5 и х = -5. Ответ: выражение 4) не имеет смысла при х = -5 и при х = 5.
IV. Два выражения называются тождественно равными, если при любых допустимых значениях переменных соответственные значения этих выражений равны.

Пример: 5 (a – b) и 5a – 5b тожественно равны, так как равенство 5 (a – b) = 5a – 5b будет верным при любых значениях a и b. Равенство 5 (a – b) = 5a – 5b есть тождество.

Тождество – это равенство, справедливое при всех допустимых значениях входящих в него переменных. Примерами уже известных вам тождеств являются, например, свойства сложения и умножения, распределительное свойство.

Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

a) преобразуйте выражение в тождественно равное, используя распределительное свойство умножения:

1) 10·(1,2х + 2,3у); 2) 1,5·(a -2b + 4c); 3) a·(6m -2n + k).

Решение. Вспомним распределительное свойство (закон) умножения:

(a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
(а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).

1) 10·(1,2х + 2,3у) = 10 · 1,2х + 10 · 2,3у = 12х + 23у.

2) 1,5·(a -2b + 4c) = 1,5а -3b + 6c.

3) a·(6m -2n + k) = 6am -2an +ak.

б) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) сложения:

4) х + 4,5 +2х + 6,5; 5) (3а + 2,1) + 7,8; 6) 5,4с -3 -2,5 -2,3с.

Решение. Применим законы (свойства) сложения:

a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
(a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).

4) х + 4,5 +2х + 6,5 = (х + 2х) + (4,5 + 6,5) = 3х + 11.

5) (3а + 2,1) + 7,8 = 3а + (2,1 + 7,8) = 3а + 9,9.

6) 6) 5,4с -3 -2,5 -2,3с = (5,4с -2,3с) + (-3 -2,5) = 3,1с -5,5.

в) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) умножения:

7) 4 · х · (-2,5); 8) -3,5 ·· (-1); 9) 3а · (-3) · 2с.

Решение. Применим законы (свойства) умножения:

a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
(a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).

7) 4 · х · (-2,5) = -4 · 2,5 · х = -10х.

8 ) -3,5 ·· (-1) = 7у.

9) 3а · (-3) · 2с = -18ас.

Если алгебраическое выражение дано в виде сократимой дроби, то пользуясь правилом сокращения дроби его можно упростить, т.е. заменить тождественно равным ему более простым выражением.

Примеры. Упростите, используя сокращение дробей.

Решение. Сократить дробь — это значит разделить ее числитель и знаменатель на одно и то же число (выражение), отличное от нуля. Дробь 10) сократим на 3b; дробь 11) сократим на а и дробь 12) сократим на 7n. Получаем:

Алгебраические выражения применяют для составления формул.

Формула – это алгебраическое выражение, записанное в виде равенства и выражающее зависимость между двумя или несколькими переменными. Пример: известная вам формула пути s=v·t (s — пройденный путь, v — скорость, t — время). Вспомните, какие еще формулы вы знаете.

Основные виды выражений в алгебре

На уроках алгебры в школе мы сталкиваемся с выражениями различного вида. По мере изучения нового материала записи выражений становятся все разнообразнее и сложнее. Например, познакомились со степенями – в составе выражений появились степени, изучили дроби – появились дробные выражения и т.д.

Для удобства описания материала, выражениям, состоящим из схожих элементов, дали определенные названия, чтобы выделить их из всего разнообразия выражений. В этой статье мы ознакомимся с ними, то есть, дадим обзор основных выражений, изучаемых на уроках алгебры в школе.

Навигация по странице.

  • Одночлены и многочлены.
  • Рациональные (алгебраические) дроби.
  • Рациональные выражения.
    • Целые рациональные выражения.
    • Дробные рациональные выражения.
  • Выражения со степенями.
  • Иррациональные выражения, выражения с корнями.
  • Тригонометрические выражения.
  • Логарифмические выражения.
  • Дроби.
  • Выражения общего вида.

Одночлены и многочлены

Начнем с выражений, имеющих название одночлены и многочлены. На момент написания этой статьи разговор про одночлены и многочлены начинается на уроках алгебры в 7 классе. Там даются следующие определения.

Одночленами называются числа, переменные, их степени с натуральным показателем, а также любые произведения, составленные из них.

Многочлены – это сумма одночленов.

Например, число 5 , переменная x , степень z 7 , произведения 5·x и 7·x·2·7·z 7 – это все одночлены. Если же взять сумму одночленов, например, 5+x или z 7 +7+7·x·2·7·z 7 , то получим многочлен.

К одночленам и многочленам относится ряд сопутствующих понятий. К примеру, для одночленов и многочленов характерно понятие их степени, также даются определения одночленов и многочленов стандартного вида. При описании одночленов также пользуются понятием коэффициента, а при описании многочленов используют такие термины, как члены многочлена, которые, в частности, бывают подобными, свободный член многочлена и старший коэффициент. Соответствующие определения вместе с примерами Вы найдете в статье одночлен и его стандартный вид, степень и коэффициент одночлена, а также в статье многочлены – основные определения и примеры.

Работа с одночленами и многочленами часто подразумевает выполнение действий с ними. Так на множестве одночленов определено умножение одночленов и возведение одночлена в степень, в том смысле, что в результате их выполнения получается одночлен.

На множестве многочленов определено сложение, вычитание, умножение, возведение в степень. Как определяются эти действия, и по каким правилам они выполняются, мы поговорим в статье действия с многочленами.

Если говорить про многочлены с единственной переменной, то при работе с ними значительную практическую значимость имеет деление многочлена на многочлен, а также часто такие многочлены приходится представлять в виде произведения, это действие имеет название разложение многочлена на множители.

Рациональные (алгебраические) дроби

В 8 классе начинается изучение выражений, содержащих деление на выражение с переменными. И первыми такими выражениями выступают рациональные дроби, которые некоторые авторы называют алгебраическими дробями.

Рациональная (алгебраическая) дробь это дробь, числителем и знаменателем которой являются многочлены, в частности, одночлены и числа.

Приведем несколько примеров рациональных дробей: и . К слову, любая обыкновенная дробь является рациональной (алгебраической) дробью.

На множестве алгебраических дробей вводятся сложение, вычитание, умножение, деление и возведение в степень. Как это делается объяснено в статье действия с алгебраическими дробями.

Часто приходится выполнять и преобразование алгебраических дробей, наиболее распространенными из них являются сокращение и приведение к новому знаменателю.

Рациональные выражения

В школе до изучения иррациональных чисел работа ведется исключительно с рациональными выражениями. Дадим определение рационального выражения.

Числовые и буквенные выражения, в которых используются рациональные числа и буквы, а также операции сложения, вычитания, умножения, деления (деление может быть обозначено дробной чертой) и возведения в целую степень, называются рациональными выражениями.

Важное пояснение: в рациональных выражениях не могут присутствовать знаки и функции, которые могут внести иррациональность. Иными словами, в рациональных выражениях не должно быть знаков радикала (корней), степеней с дробными и иррациональными показателями, степеней с переменными в показателе, логарифмов, тригонометрических функций и т.п.

Теперь можно привести примеры рациональных выражений. Отталкиваясь от данного выше определения, можно утверждать, что числовые выражения и являются рациональными выражениями. Рациональным является и буквенное выражение , а также выражения с переменными вида a·x 2 +b·x+c и .

Рациональные выражения подразделяются на целые рациональные выражения и дробные рациональные выражения.

Целые рациональные выражения

Целыми рациональными выражениями называются рациональные выражения, которые не содержат деления на выражения с переменными и выражений с переменными в отрицательной степени.

Согласно данному определению, целыми рациональными выражениями являются, например, буквенное выражение a+1 , выражение с тремя переменными вида x 2 ·y 3 −z+3/2 и дробь .

А выражения x:(y−1) и не являются целыми рациональными, так как содержат деление на выражение с переменными.

Дробные рациональные выражения

Если рациональное выражение содержит деление на выражение с переменными и/или выражение с переменными в отрицательной степени, то оно называется дробным рациональным выражением.

Данное определение позволяет привести примеры дробных рациональных выражений. К примеру, выражения 1:x , и являются дробными рациональными.

А вот рациональные выражения (2·x−x 2 ):4 и не содержат деления на выражения с переменными и отрицательных степеней выражений с переменными, поэтому они не являются дробными рациональными выражениями.

Выражения со степенями

Название данного вида выражений говорит само за себя. Выражения со степенями (их еще называют степенные выражения) появляются во время изучения степеней.

Выражения со степенями (степенные выражения) – это выражения, содержащие степени в своей записи.

Приведем несколько примеров выражений со степенями. Они могут не содержать переменных, например, 2 3 , . Также имеют место степенные выражения с переменными: и т.п.

Не помешает ознакомиться с тем, как выполняется преобразование выражений со степенями.

Иррациональные выражения, выражения с корнями

Знакомство с понятием корня приводит к возникновению выражений, в записях которых присутствуют знаки корней (радикалы). Такие выражения обычно называют выражениями с корнями или выражениями, содержащими операцию извлечения корня. Их же называют иррациональными выражениями.

Иррациональные выражения (выражения с корнями) – это выражения, которые содержат в записи знаки корней.

На основании данного определения , a+1/(a 1/2 +2) , и – это все иррациональные выражения, так как в каждом из них присутствует хотя бы один знак корня.

Так как корни тесно связаны со степенями, то они очень часто присутствуют в выражениях совместно. Например, и т.п.

В статье преобразование иррациональных выражений (выражений с корнями) мы поговорим про основные приемы работы с иррациональными выражениями.

Тригонометрические выражения

Тригонометрическими выражениями обычно называют выражения, содержащие sin, cos, tg и ctg, а также обратные тригонометрические функции arcsin, arccos, arctg и arcctg.

Приведем примеры тригонометрических выражений: , .

При работе с тригонометрическими функциями обычно используются свойства синуса, косинуса, тангенса, котангенса, основные формулы тригонометрии, свойства arcsin, arccos, arctg и arcctg и формулы с arcsin, arccos, arctg и arcctg. Подробнее об основных принципах обращения с тригонометрическими выражениями мы расскажем в статье преобразование тригонометрических выражений.

Логарифмические выражения

Логарифмические выражения возникают после знакомства с логарифмами.

Выражения, содержащие логарифмы называют логарифмическими выражениями.

Примерами логарифмических выражений являются log39+lne , log2(4·a·b) , .

Очень часто в выражениях встречаются одновременно и степени и логарифмы, что и понятно, так как по определению логарифм есть показатель степени. В результате естественно выглядят выражения подобного вида: .

В продолжение темы обращайтесь к материалу преобразование логарифмических выражений.

Дроби

В этом пункте мы рассмотрим выражения особого вида – дроби.

Дробь расширяет понятие обыкновенной дроби. Дроби также имеют числитель и знаменатель, находящиеся соответственно сверху и снизу горизонтальной дробной черты (слева и справа наклонной дробной черты). Только в отличие от обыкновенных дробей, в числителе и знаменателе могут быть не только натуральные числа, но и любые другие числа, а также любые выражения.

Итак, дадим определение дроби.

Дробь – это выражение, состоящее из разделенных дробной чертой числителя и знаменателя, которые представляют собой некоторые числовые или буквенные выражения или числа.

Данное определение позволяет привести примеры дробей.

Начнем с примеров дробей, числителями и знаменателями которых являются числа: 1/4 , , (−15)/(−2) . В числителе и знаменателе дроби могут быть и выражения, как числовые, так и буквенные. Вот примеры таких дробей: (a+1)/3 , (a+b+c)/(a 2 +b 2 ) , .

А вот выражения 2/5−3/7 , дробями не являются, хотя и содержат дроби в своих записях.

Выражения общего вида

В старших классах, особенно в задачах повышенной трудности и задачах группы С в ЕГЭ по математике, будут попадаться выражения сложного вида, содержащие в своей записи одновременно и корни, и степени, и логарифмы, и тригонометрические функции, и т.п. Например, или . Они по виду подходят под несколько типов перечисленных выше выражений. Но их обычно не относят ни к одному из них. Их считают выражениями общего вида, а при описании говорят просто выражение, не добавляя дополнительных уточнений.

Завершая статью, хочется сказать, что если данное выражение громоздкое, и если Вы не совсем уверены, к какому виду оно относится, то лучше назвать его просто выражением, чем назвать его таким выражением, каким оно не является.

Числовые и буквенные выражения

О чем эта статья:

Числовые выражения: что это

Числовое выражение — это запись, которая состоит из чисел и знаков арифметического действия между ними.

Именно числовые выражения окружают нас повсюду — не только на уроках математики, но и в магазине, на кухне или когда мы считаем время. Простые примеры, в которых нужно вычислить разность, сумму, получить результат умножения или деления — это все числовые выражения.

Например:

  • 23 + 5 = 28
  • 5 – 2 = 3
  • 52 * 3 = 156
  • 28 : 7 = 4

Это простые числовые выражения.

Чтобы получить сложное числовое выражение, нужно к простому выражению присоединить знаком арифметического действия еще одно простое числовое выражение. Вот так:

  • (5 * 3) – (5 * 2) = 5
  • 6 : (7 – 4) = 2
  • (45 + 45) : 9 = 10
  • 11 * (5 * 5) = 275

Это сложные числовые выражения.

Знать, где простое выражение, а где сложное — нужно, но называть оба типа выражений следует просто «числовое выражение».

Число, которое мы получаем после выполнения всех арифметических действий в числовом выражении, называют значением этого выражения.

Вспомним, какие виды арифметических действий есть.
+ — знак сложения, найти сумму.
– — знак вычитания, найти разность.
* — знак умножения, найти произведение.
: — знак деления, найти частное.

11 — значение числового выражения.
6 * 8 = 48
48 — значение числового выражения.

При вычислении сложных числовых выражений нужно строго соблюдать очередность выполнения арифметических действий:

  • Сначала выполняется действие, записанное в скобках.
  • Затем выполняется деление/умножение.
  • В последнюю очередь выполняется сложение/вычитание.

Пример 1. Найдите значение числового выражения: 3 * (2 + 8) – 4

  1. 2 + 8 = 10
  2. 3 * 10 = 30
  3. 30 – 4 = 26

Пример 2. Найдите значение числового выражения: (6 + 7) * (13 + 2)

  1. 6 + 7 = 13
  2. 13 + 2 = 15
  3. 13 * 15 = 195

(6 + 7) * (13 + 2) = 195

Часто бывает нужно сравнить два числовых выражения.

Сравнить числовые выражения — значит найти значения каждого выражения и сравнить их.

Пример 1. Сравните два числовых выражения: 6 + 8 и 2 * 2

    Сначала находим значение первого выражения:

6 + 8 = 14

Затем находим значение второго выражения:

2 * 2 = 4

Сравниваем получившиеся результаты:

14 больше 4
14 > 4
6 + 8 > 2 * 2

Пример 2. Сравните следующие числовые выражения:
5 * (12 – 2) – 7 и (115 + 9) – (7 – 3)

    Находим значение первого выражения, соблюдая порядок выполнения арифметических действий:

12 – 2 = 10
5 * 10 = 50
50 – 7 = 43
5 * (12 – 2) – 7 = 43

Затем находим значение:

115 + 9 = 124
7 – 3 = 4
124 – 4 = 120

Сравниваем полученные результаты:

43 меньше 120
43

Буквенные выражения

Кажется, с числовыми выражениями все достаточно просто. Буквенные выражения немногим сложнее.

В буквенном выражение есть цифры, знаки арифметических действия и буквы.

Получается, что буквенное выражение — это числовое выражение, в котором есть не только числа, но и буквы.

  • Например:
    (5 + a) * 7
    7 * (x – 2)
    (6 – 2) + (3 + x)

Это буквенные выражения. Для записи буквенных выражений используют буквы латинского алфавита.

У буквенных выражений, как и у числовых, есть определенный алгоритм вычисления:

  • Сначала следует прочитать его полностью.
  • Затем оно записывается.
  • Третьим шагом идет подстановка значения неизвестного в выражение.
  • А затем производится вычисление, согласно очередности выполнения арифметических действий.

Пример 1. Найдите значение выражения: 5 + x.

  1. Читаем: найдите сумму числа 5 и x.
  2. Подставляем вместо неизвестного x число 4.
  3. Вычисляем: 5 + 4 = 9.

Пример 2. Найдите значение выражения: (4 + a) * (2 + x).

  1. Читаем: найдите произведение суммы числа 4 и а и суммы числа 2 и x.
  2. Подставляем вместо неизвестного a число 2.
  3. Вычисляем 4 + 2 = 6.
  4. Подставляем вместо неизвестного x число 5.
  5. Вычисляем 2 + 5 = 10.
  6. Находим произведение 6 * 10 = 60.
  7. Записываем результат: (4 + 2) * (2 + 5) = 60.

Выражения с переменными

Переменная — это значение буквы в буквенном выражении.

  • Например, в выражении x + a – 8
    x — переменная
    a — переменная

Если вместо переменных подставить числа, то буквенное выражение x + a – 8 станет числовым выражением. Вот так:

  • подставляем вместо переменной x число 5, а вместо переменной a — число 10, получаем 5 + 10 – 8.

Числа, которые подставляют вместо переменных — это значения переменных. В нашем примере это числа 5 и 10.

После подстановки значения переменных находим значение x + a – 8 = 5 + 10 – 8 = 7.

Часто можно встретить буквенные выражения, записанные следующим образом:
5x – 4a

Число и переменная записаны без знака арифметического действия. Так коротко записывается умножение.

  • 5x – 4a = 5*x – 4*a

5x — это произведение числа 5 и переменной x
4a — это произведение числа 4 и переменной a

Числа 4 и 5 называют коэффициентами.
Коэффициент показывает, во сколько раз будет увеличена переменная.

Теперь вы вооружены всеми необходимыми теоретическими знаниями о числовых и буквенных выражениях. Давайте немного поупражняемся в решении задачек и примеров, чтобы научиться применять полученные знания на практике.

Задание раз.

  1. Сумма 6 и a.
  2. Разность 8 и x.
  3. Сумма x – 2 и 6
  4. Разность 15 и x – y
  5. Сумма 45 + 5 и 12 – 6
  1. 6 + a.
  2. 8 – x
  3. (x – 2) + 6
  4. 15 – (x – y)
  5. (45 + 5) + (12 – 6).

Задание два.

Составьте буквенное выражение:

Сумма разности b и 345 и суммы 180 и x.

Ответ: (b – 345) + (180 + x).

Задание три.
Составьте буквенное выражение:
Разность разности 30 и y и разности a и b.
Ответ: (30 – y) – (a – b).

Задание четыре.
Составьте выражение для решения задачи и найдите его значение.
Ролл «Калифорния» стоит 480 рублей — это на 40 рублей меньше, чем ролл «Филадельфия». Сколько будут стоить оба ролла?
Как решаем:
Калифорния — 480 рублей.
Филадельфия — 480 + 40.
Калифорния + Филадельфия = ?
480 + (480 + 40).
Мы помним, что выполнение арифметических действий в числовом выражении имеет строгую последовательность. Сначала — действие в скобках:
480 + 520 = 1 000.

Ответ: роллы “Калифорния” и “Филадельфия” вместе стоят 1 000 рублей.

Задание пять.
Составьте выражение для решения задачи и найдите его значение.
Маша посмотрела за день 150 видео в ТикТок, а Лена — на 13 видео больше. Сколько всего видео было просмотрено обеими девочками?

Маша — 150 видео.
Лена — 150 + 13 видео.
Маша + Лена = ? видео.

150 + (150 + 13)
Выполняем сначала действие в скобках: 150 + 13 = 163.
150 + 163 = 313.

Ответ: Маша и Лена посмотрели всего 313 видео.

Задание шесть.
Вычислите:
(500 + 300) : a – 15,
при условии, что a = 10.

Подставляем число 10 (значение переменной) вместо переменной
(500 + 300) : 10 – 15

Затем выполняем сначала арифметическое действие в скобках: 500 + 300 = 800.
Затем выполняем деление 800 : 10 = 80.
Выполняем вычитание 80 – 15 = 65.

Ответ: (500 + 300) : 10 – 15 = 65.

Задание семь.
Вычислите:
(270 – 120) * (x – 10),
при условии, что x = 45.

Как решаем: подставляем число 45 (значение переменной) вместо переменной x
(270 – 120) * (45 – 10).

Затем выполняем сначала арифметическое действие в скобках: 270 – 120 = 150.
Выполняем арифметическое действие во вторых скобках: 45 – 10 = 35.
Затем выполняем умножение 150 * 35 = 5 250

Ответ: (270 – 120) * (45 – 10) = 5 250.

Задание восемь.
Вычислите:
(50 * x) – (3 * y)
при условии, что x = 2; y = 10

Подставляем число 2 вместо переменной x
(50 * 2) – (3 * y).

Подставляем число 10 вместо переменной y
(50 * 2) – (3 * 10).

Затем выполняем сначала арифметическое действие в скобках: 50 * 2 = 100.
Выполняем арифметическое действие во вторых скобках: 3 * 10 = 30.
Затем выполняем вычитание 100 – 30 = 70

Числовые и алгебраические выражения. Преобразование выражений.

Что такое выражение в математике? Зачем нужны преобразования выражений?

Вопрос, как говорится, интересный. Дело в том, что эти понятия – основа всей математики. Вся математика состоит из выражений и их преобразований. Не очень понятно? Поясню.

Допустим, перед вами злой пример. Очень большой и очень сложный. Допустим, вы сильны в математике и ничего не боитесь! Сможете сразу дать ответ?

Вам придётся решать этот пример. Последовательно, шаг за шагом, этот пример упрощать. По определённым правилам, естественно. Т.е. делать преобразование выражений. Насколько успешно вы проведёте эти преобразования, настолько вы и сильны в математике. Если вы не умеете делать правильные преобразования, в математике вы не сможете сделать ни-че-го.

Во избежание такого неуютного будущего (или настоящего. ), не мешает разобраться в этой теме.)

Для начала выясним, что такое выражение в математике. Что такое числовое выражение и что такое алгебраическое выражение.

Что такое выражение в математике?

Выражение в математике – это очень широкое понятие. Практически всё то, с чем мы имеем дело в математике – это набор математических выражений. Любые примеры, формулы, дроби, уравнения и так далее – это всё состоит из математических выражений.

3+2 – это математическое выражение. с 2 – d 2 – это тоже математическое выражение. И здоровущая дробь, и даже одно число – это всё математические выражения. Уравнение, например, вот такое:

состоит из двух математических выражений, соединённых знаком равенства. Одно выражение – слева, другое – справа.

В общем виде термин “математическое выражение” применяется, чаще всего, чтобы не мычать. Спросят вас, что такое обыкновенная дробь, например? И как ответить?!

Первый вариант ответа: “Это. м-м-м-м. такая штука. в которой. А можно я лучше напишу дробь? Вам какую?”

Второй вариант ответа: “Обыкновенная дробь – это (бодро и радостно!) математическое выражение, которое состоит из числителя и знаменателя!”

Второй вариант как-то посолидней будет, правда?)

Вот в этих целях фраза “математическое выражение” очень хороша. И правильно, и солидно. Но для практического применения надо хорошо разбираться в конкретных видах выражений в математике.

Конкретный вид- это другое дело. Это совсем другое дело! У каждого вида математических выражений есть свой набор правил и приёмов, который необходимо использовать при решении. Для работы с дробями – один набор. Для работы с тригонометрическими выражениями – второй. Для работы с логарифмами – третий. И так далее. Где-то эти правила совпадают, где-то – резко отличаются. Но не пугайтесь этих страшных слов. Логарифмы, тригонометрию и прочие загадочные вещи мы будем осваивать в соответствующих разделах.

Здесь мы освоим (или – повторим, кому как. ) два основных вида математических выражений. Числовые выражения и алгебраические выражения.

Числовые выражения.

Что такое числовое выражение? Это очень простое понятие. Само название намекает, что это выражение с числами. Да, так оно и есть. Математическое выражение, составленное из чисел, скобок и знаков арифметических действий называется числовым выражением.

7-3 – числовое выражение.

(8+3,2)·5,4 – тоже числовое выражение.

И вот этот монстр:

тоже числовое выражение, да.

Обычное число, дробь, любой пример на вычисление без иксов и прочих букв – всё это числовые выражения.

Главный признак числового выражения – в нём нет букв. Никаких. Только числа и математические значки (если надо). Всё просто, правда?

И что можно делать с числовыми выражениями? Числовые выражения, как правило, можно считать. Для этого приходится, бывает, раскрывать скобки, менять знаки, сокращать, менять местами слагаемые – т.е. делать преобразования выражений. Но об этом чуть ниже.

Здесь же мы разберёмся с таким забавным случаем, когда с числовым выражением ничего делать не надо. Ну вот совсем ничего! Эта приятная операция – ничего не делать) – выполняется, когда выражение не имеет смысла.

Когда числовое выражение не имеет смысла?

Понятное дело, если мы видим перед собой какую-то абракадабру, типа

то делать ничего и не будем. Так как непонятно, что с этим делать. Бессмыслица какая-то. Разве что, посчитать количество плюсиков.

Но бывают внешне вполне благопристойные выражения. Например такое:

Однако, это выражение тоже не имеет смысла! По той простой причине, что во вторых скобочках – если посчитать – получается ноль. А на ноль делить нельзя! Это запретная операция в математике. Стало быть, с этим выражением тоже ничего делать не надо. При любом задании с таким выражением, ответ будет всегда один: “Выражение не имеет смысла!”

Чтобы дать такой ответ, пришлось, конечно, посчитать, что в скобочках будет. А иногда в скобочках такого понаворочено. Ну тут уж ничего не поделаешь.

Запретных операций в математике не так уж много. В этой теме – всего одна. Деление на ноль. Дополнительные запреты, возникающие в корнях и логарифмах обсуждаются в соответствующих темах.

Итак, представление о том, что такое числовое выражение – получили. Понятие числовое выражение не имеет смысла – осознали. Едем дальше.

Алгебраические выражения.

Если в числовом выражении появляются буквы – это выражение становится. Выражение становится. Да! Оно становится алгебраическим выражением. Например:

5а 2 ; 3x-2y; 3(z-2); 3,4m/n; x 2 +4x-4; (а+b) 2 ; .

и так далее, до бесконечности. )

Ещё такие выражения называют буквенными выражениями. Или выражениями с переменными. Это, практически, одно и то же. Выражение 5а +с, к примеру – и буквенное, и алгебраическое, и выражение с переменными.

Понятие алгебраическое выражение – более широкое, чем числовое. Оно включает в себя и все числовые выражения. Т.е. числовое выражение – это тоже алгебраическое выражение, только без букв. Всякая селёдка – рыба, но не всякая рыба – селёдка. )

Почему буквенное – понятно. Ну, раз буквы есть. Фраза выражение с переменными тоже не сильно озадачивает. Если понимать, что под буквами скрываются числа. Всякие числа могут скрываться под буквами. И 5, и -18, и всё, что угодно. Т.е букву можно заменять на разные числа. Поэтому буквы и называются переменными.

В выражении у+5, например, у – переменная величина. Или говорят просто “переменная”, без слова “величина”. В отличие от пятёрки, которая – величина постоянная. Или просто – постоянная.

Термин алгебраическое выражение означает, что для работы с данным выражением нужно использовать законы и правила алгебры. Если арифметика работает с конкретными числами, то алгебра – со всеми числами разом. Простой пример для пояснения.

В арифметике можно записать, что

Посчитать, и все дела. Слева 8, и справа 8. А для других чисел такое равенство выполняется? Тоже можно записать и посчитать. Но чисел – бесконечное количество. И что, каждый раз считать?!

А вот если мы подобное равенство запишем через алгебраические выражения:

мы сразу решим все вопросы. Для всех чисел махом. Для всего бесконечного количества. Потому, что под буквами а и b подразумеваются все числа. И не только числа, но даже и другие математические выражения. Вот так работает алгебра.

Когда алгебраическое выражение не имеет смысла?

Про числовое выражение всё понятно. Там на ноль делить нельзя. А с буквами, разве можно узнать, на что делим?!

Возьмём для примера вот такое выражение с переменными:

Имеет оно смысл? Да кто ж его знает? а – любое число.

Любое-то любое. Но есть одно значение а, при котором это выражение точно не имеет смысла! И что это за число? Да! Это 5! Если переменную а заменить (говорят – “подставить”) на число 5, в скобочках ноль получится. На который делить нельзя. Вот и получается, что наше выражение не имеет смысла, если а = 5. Но при других-то значениях а смысл имеется? Другие числа подставлять-то можно?

Конечно. Просто в таких случаях говорят, что выражение

имеет смысл для любых значений а, кроме а = 5.

Весь набор чисел, которые можно подставлять в заданное выражение, называется областью допустимых значений этого выражения.

Как видите, ничего хитрого нет. Смотрим на выражение с переменными, да соображаем: при каком значении переменной получается запретная операция (деление на ноль)?

А потом обязательно смотрим на вопрос задания. Чего спрашивают-то?

Если спрашивают, при каком значении переменной выражение не имеет смысла, наше запретное значение и будет ответом.

Если спрашивают, при каком значении переменной выражение имеет смысл (почувствуйте разницу!), ответом будут все остальные числа, кроме запретного.

Зачем нам смысл выражения? Есть он, нет его. Какая разница?! Дело в том, что это понятие становится очень важным в старших классах. Крайне важным! Это основа для таких солидных понятий, как область допустимых значений или область определения функции. Без этого вы вообще не сможете решать серьёзные уравнения или неравенства. Вот так.

Преобразование выражений. Тождественные преобразования.

Мы познакомились с числовыми и алгебраическими выражениями. Поняли, что означает фраза “выражение не имеет смысла”. Теперь надо разобраться, что такое преобразование выражений. Ответ прост, до безобразия.) Это любое действие с выражением. И всё. Вы эти преобразования делали с первого класса.

Возьмём крутое числовое выражение 3+5. Как его можно преобразовать? Да очень просто! Посчитать:

Вот этот расчёт и будет преобразованием выражения. Можно записать то же самое выражение по-другому:

Тут мы вообще ничего не считали. Просто записали выражение в другом виде. Это тоже будет преобразованием выражения. Можно записать вот так:

И это тоже – преобразование выражения. Таких преобразований можно понаделать сколько хочешь.

Любое действие над выражением, любая запись его в другом виде называется преобразованием выражения. И все дела. Всё очень просто. Но есть здесь одно очень важное правило. Настолько важное, что его смело можно назвать главным правилом всей математики. Нарушение этого правила неизбежно приводит к ошибкам. Вникаем?)

Предположим, мы преобразовали наше выражение как попало, вот так:

Преобразование? Конечно. Мы же записали выражение в другом виде, что здесь не так?

Всё не так.) Дело в том, что преобразования “как попало” математику не интересуют вообще.) Вся математика построена на преобразованиях, в которых меняется внешний вид, но суть выражения не меняется. Три плюс пять можно записать в каком угодно виде, но это должно быть восемь.

Преобразования, не меняющие сути выражения называются тождественными.

Именно тождественные преобразования и позволяют нам, шаг за шагом, превращать сложный пример в простое выражение, сохраняя суть примера. Если в цепочке преобразований мы ошибёмся, сделаем НЕ тождественное преобразование, дальше мы будем решать уже другой пример. С другими ответами, которые не имеют отношения к правильным.)

Вот оно и главное правило решения любых заданий: соблюдение тождественности преобразований.

Пример с числовыми выражением 3+5 я привёл для наглядности. В алгебраических выражениях тождественные преобразования даются формулами и правилами. Скажем, в алгебре есть формула:

Значит, мы в любом примере можем вместо выражения a(b+c) смело написать выражение ab + ac. И наоборот. Это тождественное преобразование. Математика предоставляет нам выбор из этих двух выражений. А уж какое из них писать – от конкретного примера зависит.

Ещё пример. Одно из из самых главных и нужных преобразований – это основное свойство дроби. Подробнее можно по ссылке посмотреть, а здесь просто напомню правило: если числитель и знаменатель дроби умножить (разделить) на одно и то же число, или неравное нулю выражение, дробь не изменится. Вот вам пример тождественных преобразований по этому свойству:

Как вы, наверняка, догадались, эту цепочку можно продолжать до бесконечности. ) Очень важное свойство. Именно оно позволяет превращать всякие монстры-примеры в белые и пушистые.)

Формул, задающих тождественные преобразования, – много. Но самых главных – вполне разумное количество. Одно из базовых преобразований – разложение на множители. Оно используется во всей математике – от элементарной до высшей. С него и начнём. В следующем уроке.)

Если Вам нравится этот сайт.

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Вот здесь можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся – с интересом!)

А вот здесь можно познакомиться с функциями и производными.

Алгебраические выражения и их характеристики
методическая разработка по алгебре на тему

В публикации представлена логика различия алгебраических выражений для учащихся основного общего и среднего (полного) общего образования как переходной этап формирования логики различий математических выражений применяемых в физике и т.д. для формирования в дальнейшем понятий о явлениях, задачах, их классификации и методологии подхода их решения.

Скачать:

ВложениеРазмер
algebraicheskie_vyrazheniya_i_ih_harakteristiki.docx156.8 КБ

Предварительный просмотр:

Алгебраические выражения и их характеристики

Алгебра, как наука, изучает закономерности действий над множествами, обозначенных буквами. К алгебраическим действиям относят сложение, вычитание, умножение, деление, возведение в степень, извлечение корня. В результате данных действий образовались алгебраические выражения. Алгебраическое выражение – выражение, состоящее из чисел и букв, обозначающих множества, с которым осуществляют алгебраические действия. Данные действия перешли в алгебру из арифметики. В алгебре рассматривают и приравнивание одного алгебраического выражения другому, что является их тождественным равенством. Примеры алгебраических выражений приведены в §1. Методы преобразований и взаимосвязи выражений были тоже позаимствованы у арифметики . Знания арифметических закономерностей действий над арифметическими выражениями позволяют проводить преобразования над похожими алгебраическими выражениями, преобразовывать их, упрощать, сравнивать, анализировать. Алгебра – наука закономерностей преобразований выражений, состоящих из множеств, представленных в виде буквенных обозначений, связанных между собой знаками различных действий. Существуют и более сложные алгебраические выражения, изучаемые в высших учебных заведениях. Пока их можно разделить на виды, наиболее часто применяемые в школьном курсе.

1 Виды алгебраических выражений

п.1 Простые выражения: 4a; (a + b); (a + b)3с; ; .

п.2 Тождественные равенства: (a + b)с = aс + bс; ;

п.3 Неравенства: aс ; a + с .

п.4 Формулы: х=2а+5; у=3b; у=0,5d 2 +2;

– первого уровня сложности

– второго уровня сложности

– третьего уровня сложности сточки зрения поиска значений для множеств

– четвертого уровня сложности сточки зрения поиска значений для множеств а, у:

ах+с = -5bх; 4х 2 +2х= 42;

п.7 Функциональные зависимости: у=3х; у=ах 2 +4b; у=0,5х 2 +2;

2 Рассмотрим алгебраические выражения

2.1 В п.1 представлены простые алгебраические выражения. Бывает вид и

сложнее, к примеру:

Как правило, такие выражения не имеют знака «=». Задачей при рассмотрении таких выражений является их преобразование и получение в упрощенном виде. При преобразовании алгебраического выражения, относящегося к п.1, получают новое алгебраическое выражение, которое по своему значению равнозначно предыдущему. Такие выражения, говорят, тождественно равнозначны. Т.е. алгебраическое выражение слева от знака равно, равнозначно по своему значению алгебраическому выражению справа. В таком случае получают алгебраическое выражение нового вида, называемое тождественным равенством (см. п. 2).

2.2 В п.2 представлены алгебраические тождественные равенства , которые образуются при алгебраических методах преобразования, рассматриваются алгебраические выражения, наиболее часто применяемые как методы при решении задач по физике. Примеры тождественных равенств алгебраических преобразований, применяемых часто в математике и физике:

Переместительный закон сложения: a + b = b + a.

Сочетательный закон сложения: (a + b) + с = a + (b + c).

Переместительный закон умножения: ab = ba.

Сочетательный закон умножения: (ab)с = a(bc).

Распределительный закон умножения относительно сложения:

Распределительный закон умножения относительно вычитания:

Тождественные равенства дробных алгебраических выражений (предполагается, что знаменатели дробей отличны от нуля):

Тождественные равенства алгебраических выражений со степенями:

где ( n раз, ) – степень с целым показателем

б) (a + b) 2 =а 2 +2ab+b 2 .

Тождественные равенства алгебраических выражений с корнями n- й степени:

Выражение – арифметический корень n -й степени из числа В частности, – арифметический квадратный.

Степень с дробным (рациональным) показателем корень:

Тождественные выше приведенные равнозначные выражения применяют для преобразований более сложных алгебраических выражений, не содержащих знака «=».

Рассмотрим пример, в котором для преобразований более сложного алгебраического выражения используют знания, приобретенные при преобразованиях более простых алгебраических выражений в виде тождественных равенств.

2.3 В п.3 представлены алгебраические н еравенства, у которых алгебраическое выражение левой части не равно правой, т.е. не являются тождественными. В таком случае они и являются неравенствами. Как правило, при решении некоторых задач по физике важны свойства неравенств:

1) Если a , то при любом c : a + с .

2) Если a и c > 0 , то aс .

3) Если a и c , то aс > bс .

4) Если a , a и b одного знака, то 1/a > 1/b .

5) Если a и c , то a + с , a – d .

6) Если a , c , a > 0 , b > 0 , c > 0 , d > 0 , то ac .

7) Если a , a > 0 , b > 0 , то

8) Если , то

2.4 В п.4 представлены алгебраические формулы т.е. алгебраические выражения, у которых с левой части от знака равенства стоит буква, обозначающая множество, значение которого неизвестно и его следует определить. А с правой части от знака равно стоят множества, значения которых известны. В данном случае это алгебраическое выражение называют алгебраической формулой.

Алгебраическая формула – это алгебраическое выражение, содержащее знак равенства, с левой стороны от которого находится множество, значение которого неизвестно, а справа – множества с известными значениями, исходя из условия задачи. Для определения неизвестного значения множества, стоящего слева от знака «равно», производят подстановку известных значений величин в правой части от знака «равно» и осуществляют арифметические вычислительные действия, обозначенные в алгебраическом выражении в этой части.

Дано: Решение:

а=25 Пусть дано алгебраическое выражение:

х=? х=2а+5.

Данное алгебраическое выражение является алгебраической формулой т.к. слева от знака «равно» стоит множество, значение которого следует найти, а справа – множества с известными значениями.

Следовательно, можно осуществлять подстановку известного значения для множества «а», для определения неизвестного значения множества «х»:

х=2·25+5=55. Ответ: х=55.

Дано: Решение:

а=25 Алгебраическое выражение является формулой.

b=4 Поэтому можно осуществлять подстановку известных

c=8 значений для множеств, находящихся справа от знака «равно»,

d=3 для определения неизвестного значения множества «k»,

m=20 стоящего слева:

k=?

1 Что собой представляет алгебраическое выражение?

2 Какие виды алгебраических выражений вы знаете?

3 Какое алгебраическое выражение называют тождественным равенством?

4 Для чего необходимо знать шаблоны тождественных равенств?

5 Какое алгебраическое выражение называют формулой?

6 Какое алгебраическое выражение называют уравнением?

7 Какое алгебраическое выражение называют функциональной зависимостью?

По теме: методические разработки, презентации и конспекты

Урок 7 класса, тема «Числовые и алгебраические выражения», учебник под редакцией А.Г.Мордковича. На тему отводится 4 часа, данный урок последний. Эпиграф урока: «Скажи мне – и я забуд.

Вашему вниманию предлагается 1 урок, разработанный по учебнику под редакцией А. Г. Мордковича « Алгебра. 7 класс» Объяснение нового материала идет в ходе диалога «учитель-ученик». Это особе.

Тест на 4 варианта.

Данный материал представлен технологической картой урока и ЦОР.

Конспект урока алгебры “Повторение: алгебраические выражения” 9 класс.

материалдля подготовки к ЕГЭ.

В публикации представлена логика различия алгебраических выражений для учащихся основного общего и среднего (полного) общего образования как переходной этап формирования лог.

Ссылка на основную публикацию