Выделение полного квадрата – формулы, методы и примеры решений

∑ Некоторые алгебраические понятия – определения и работа с ними

Метод выделения полного квадрата

Итак, традиционно корни многочлена находят, разложив его на множители. Разложение на множители очень помогает в поиске корней, так как, если произведение равно нулю, то один из множителей равен 0. При разложении на множители помогает вынесение общего множителя за скобку (пожалуй, это первое, что следует делать при разложении на множители). Далее обычно происходит группировка (если нет общего множителя, или этого не достаточно). Это по аналогии можно назвать методом группировки: одночлены разделяются по группам, имеющим общий множитель. Далее в идеале появляется общий множитель у всего выражения, который можно вынести и продолжить разложение. Потом, используя формулы сокращённого умножения, можно закончить разложение.

Однако, есть ещё один приём, заслуживающий отдельного внимания, основанный на формулах квадрата суммы и разности. Метод выделения полного квадрата. Особенность этих формул в том, что в них есть квадраты двух выражений и их удвоенное произведение. Если найти что-то, отдалённо напоминающее квадрат суммы или разности, но без какой-то необходимой части, то её можно прибавить, а затем отнять, тем самым не меняя конечного значения выражения. Далее, свернув квадрат суммы/разности, обычно нужно применить ещё какую-то формулу (например, разности квадратов) или совершить какую-то последовательность действий, и многочлен разложится на множители.

Пример разложения на множители методом выделения полного квадрата: y 4 + 4 ⁢ x 4 = y 2 2 + 2 2 ⁢ x 2 2 + 2 × 2 ⁢ x 2 ⁢ y 2 – 2 × 2 ⁢ x 2 ⁢ y 2 = y 2 + 2 ⁢ x 2 2 – 4 ⁢ x 2 ⁢ y 2 = y 2 + 2 ⁢ x 2 – 2 ⁢ x ⁢ y ⁢ y 2 + 2 ⁢ x 2 + 2 ⁢ x ⁢ y
Метод выделения полного квадрата имеет много применений, связанных с квадратными уравнениями. Его можно применить к квадратному трёхчлену (общему виду квадратного уравнения). a ⁢ x 2 + b ⁢ x + c = a ⁢ x 2 + b a × x + c a = a ⁢ x 2 + b ⁢ 2 a ⁢ 2 ⁢ x + c a = a ⁢ x 2 + 2 ⁢ b 2 ⁢ a + c a ; метод выделения полного квадрата : a ⁢ x 2 + b ⁢ x + c = a ⁢ x 2 + 2 ⁢ b 2 ⁢ a + b 2 4 ⁢ a 2 – b 2 4 ⁢ a 2 + c a = a ⁢ x + b 2 ⁢ a 2 – b 2 4 ⁢ a 2 + c a = a ⁢ x + b 2 ⁢ a 2 – b 2 – 4 ⁢ a ⁢ c 4 ⁢ a
Великолепная иллюстрация к методу выделения полного квадрата из Wikimedia Commons О свойствах и некоторых полезных следствиях получившегося представления можно прочитать здесь. Это ещё одна удобная форма представления квадратичной функции.

Также метод выделения полного квадрата позволяет именно решать квадратные уравнения. Для этого есть хорошо определённый и вполне известный алгоритм (написан для a x ²+b x +c = 0).

  1. Разделить каждую часть на a – старший коэффициент (при квадрате).
  2. Вычесть из обеих частей свободный член c/a.
  3. Добавить с обеих сторон квадрат половины среднего коэффициента b/a (при x).
  4. Свернуть левую часть и упростить правую (если нужно).
  5. Произвести два линейных уравнения, приравнивая квадратный корень левой части к положительному и отрицательному квадратному корню правой.
  6. Решить получившуюся систему.

У многих квадратных уравнений есть более красивые и простые решения.

Пример нестандартного, но более интуитивного и быстрого решения:
x 2 + 14 ⁢ x + 45 = 0 x 2 + 14 ⁢ x + 45 + 4 – 4 = 0 x 2 + 14 ⁢ x + 49 – 4 = 0 x + 7 2 – 4 = 0 x + 7 2 – 2 2 = 0 x + 7 – 2 ⁢ x + 7 + 2 = 0 x + 5 ⁢ x + 9 = 0 x + 5 = 0 x + 9 = 0 x = – 5 x = – 9 Ответ: x ∈ -5 -9 .
Пример решения уравнения с использованием алгоритма: 4 ⁢ x 2 + 20 ⁢ x – 24 = 0 | × 1 4 x 2 + 5 ⁢ x – 6 = 0 | – – 6 x 2 + 5 ⁢ x = 6 | + 2.5 2 x 2 + 5 ⁢ x + 6.25 = 12.25 x + 2.5 2 = 12.25 x + 2.5 = 3.5 x + 2.5 = – 3.5 x = 1 x = – 6 Ответ: x ∈ 1 – 6 .

Формула корней полного квадратного уравнения

Решение квадратных уравнений с разложением на множители – это достаточно хороший способ решения. Однако, он далеко не единственный. Корни квадратного уравнения также можно вычислять по формуле (используя их зависимость от дискриминанта и коэффициентов – подробнее о дискриминанте и зависимости), но данная формула также выводится, используя описанный выше метод выделения полного квадрата (хотя, как и везде, точное следование заданному алгоритму необязательно, и есть другие (возможно более удобные) пути выведения формулы).

Начнём, как водится, с записи квадратного уравнения общего вида: a x ²+b x +c = 0. А затем, можно проделать над уравнением ряд действий, основанных на алгоритме.

a ⁢ x 2 + b ⁢ x + c = 0 | × 1 a x 2 + b a ⁢ x + с a = 0 x + b 2 ⁢ a 2 = b 2 4 ⁢ a 2 – c a x + b 2 ⁢ a 2 = b 2 – 4 ⁢ a ⁢ c 4 ⁢ a 2
Выражение b² – 4ac называется дискриминантом квадратного уравнения (подробнее о дискриминанте можно прочитать по ссылке выше). Его можно обозначать D.
Получается. x + b 2 ⁢ a = D ⁡ 4 ⁢ a 2 x + b 2 ⁢ a = – D ⁡ 4 ⁢ a 2 Используя свойство квадратного корня из дроби, получаем конечную формулу корней квадратного уравнения. x 1 = – b + D ⁡ 2 ⁢ a x 2 = – b – D ⁡ 2 ⁢ a Это называется основной формулой корней квадратного уравнения. Далее следовало бы обсудить как по дискриминанту определить вид корней и т.д., но это тоже описано по ссылке выше.

Соответственно при решении квадратных уравнений по формуле целесообразно поступать по данному алгоритму.

  1. Вычислить дискриминант.
  2. Сравнить дискриминант с нулём.
  3. Найти корни по формуле.
  4. Если дискриминант меньше 0, то уравнение не имеет корней в поле действительных чисел ℝ .

fedor1113
К остальным темам

Выделение полного квадрата – формулы, методы и примеры решений

Описание метода выделения полного квадрата

§2. Выделение полного квадрата из квадратного трёхчлена

Описание метода выделения полного квадрата

Выражения вида 2 x 2 + 3 x + 5 , `-4x^2+5x+7` носят название квадратного трёхчлена. В общем случае квадратным трёхчленом называют выражение вида a x 2 + b x + c , где a , b , c a, b, c – произвольные числа, причём a ≠ 0 .

Рассмотрим квадратный трёхчлен x 2 – 4 x + 5 . Запишем его в таком виде: x 2 – 2 · 2 · x + 5 . Прибавим к этому выражению 2 2 и вычтем 2 2 , получаем: x 2 – 2 · 2 · x + 2 2 – 2 2 + 5 . Заметим, что x 2 – 2 · 2 · x + 2 2 = ( x – 2 ) 2 , поэтому

x 2 – 4 x + 5 = ( x – 2 ) 2 – 4 + 5 = ( x – 2 ) 2 + 1 .

Преобразование, которое мы сделали, носит название «выделение полного квадрата из квадратного трёхчлена».

Выделите полный квадрат из квадратного трёхчлена 9 x 2 + 3 x + 1 .

Заметим, что 9 x 2 = ( 3 x ) 2 , `3x=2*1/2*3x`. Тогда

Прибавим и вычтем к полученному выражению `(1/2)^2`, получаем

Покажем, как применяется метод выделения полного квадрата из квадратного трёхчлена для разложения квадратного трёхчлена на множители.

Разложите на множители квадратный трёхчлен 4 x 2 – 12 x + 5 .

Выделяем полный квадрат из квадратного трёхчлена:

2 x 2 – 2 · 2 x · 3 + 3 2 – 3 2 + 5 = 2 x – 3 2 – 4 = ( 2 x – 3 ) 2 – 2 2 .

Теперь применяем формулу a 2 – b 2 = ( a – b ) ( a + b ) , получаем:

( 2 x – 3 – 2 ) ( 2 x – 3 + 2 ) = ( 2 x – 5 ) ( 2 x – 1 ) .

Разложите на множители квадратный трёхчлен – 9 x 2 + 12 x + 5 .

– 9 x 2 + 12 x + 5 = – 9 x 2 – 12 x + 5 . Теперь замечаем, что 9 x 2 = 3 x 2 , – 12 x = – 2 · 3 x · 2 .

Прибавляем к выражению 9 x 2 – 12 x слагаемое 2 2 , получаем:

– 3 x 2 – 2 · 3 x · 2 + 2 2 – 2 2 + 5 = – 3 x – 2 2 – 4 + 5 = – 3 x – 2 2 + 4 + 5 = = – 3 x – 2 2 + 9 = 3 2 – 3 x – 2 2 .

Применяем формулу для разности квадратов, имеем:

– 9 x 2 + 12 x + 5 = 3 – 3 x – 2 3 + ( 3 x – 2 ) = ( 5 – 3 x ) ( 3 x + 1 ) .

Разложите на множители квадратный трёхчлен 3 x 2 – 14 x – 5 .

Мы не можем представить выражение 3 x 2 как квадрат какого-то выражения, т. к. ещё не изучали этого в школе. Это будете проходить позже, и уже в Задании №4 будем изучать квадратные корни. Покажем, как можно разложить на множители заданный квадратный трёхчлен:

Покажем, как применяется метод выделения полного квадрата для нахождения наибольшего или наименьшего значений квадратного трёхчлена.
Рассмотрим квадратный трёхчлен x 2 – x + 3 . Выделяем полный квадрат:

`(x)^2-2*x*1/2+(1/2)^2-(1/2)^2+3=(x-1/2)^2+11/4`. Заметим, что при `x=1/2` значение квадратного трёхчлена равно `11/4`, а при `x!=1/2` к значению `11/4` добавляется положительное число, поэтому получаем число, большее `11/4`. Таким образом, наименьшее значение квадратного трёхчлена равно `11/4` и оно получается при `x=1/2`.

Найдите наибольшее значение квадратного трёхчлена – 16 x 2 + 8 x + 6 .

Выделяем полный квадрат из квадратного трёхчлена: – 16 x 2 + 8 x + 6 = – 4 x 2 – 2 · 4 x · 1 + 1 – 1 + 6 = – 4 x – 1 2 – 1 + 6 = = – 4 x – 1 2 + 7 .

При `x=1/4` значение квадратного трёхчлена равно 7 , а при `x!=1/4` из числа 7 вычитается положительное число, то есть получаем число, меньшее 7 . Таким образом, число 7 является наибольшим значением квадратного трёхчлена, и оно получается при `x=1/4`.

Разложите на множители числитель и знаменатель дроби `/` и сократите эту дробь.

Заметим, что знаменатель дроби x 2 – 6 x + 9 = x – 3 2 . Разложим числитель дроби на множители, применяя метод выделения полного квадрата из квадратного трёхчлена.

x 2 + 2 x – 15 = x 2 + 2 · x · 1 + 1 – 1 – 15 = x + 1 2 – 16 = x + 1 2 – 4 2 = = ( x + 1 + 4 ) ( x + 1 – 4 ) = ( x + 5 ) ( x – 3 ) .

Данную дробь привели к виду `<(x+5)(x-3)>/(x-3)^2` после сокращения на ( x – 3 ) получаем `(x+5)/(x-3)`.

Разложите многочлен x 4 – 13 x 2 + 36 на множители.

Применим к этому многочлену метод выделения полного квадрата.

Разложите на множители многочлен 4 x 2 + 4 x y – 3 y 2 .

Применяем метод выделения полного квадрата. Имеем:

( 2 x ) 2 + 2 · 2 x · y + y 2 – y 2 – 3 y 2 = ( 2 x + y ) 2 – 2 y 2 = = ( 2 x + y + 2 y ) ( 2 x + y – 2 y ) = ( 2 x + 3 y ) ( 2 x – y ) .

Применяя метод выделения полного квадрата, разложите на множители числитель и знаменатель и сократите дробь `<8x^2+10x-3>/<2x^2-x-6>`.

Алгебра. 7 класс

Конспект урока

Выделение полного квадрата

Перечень рассматриваемых вопросов:

  • Квадрат суммы.
  • Квадрат разности.
  • Преобразование многочленов.
  • Выделение полного квадрата.

и уметь увидеть их в выражении.

Основная литература:

  1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

Дополнительная литература:

  1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
  2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
  3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Вы познакомились с формулами сокращённого умножения и научились раскладывать по ним квадрат разности и квадрат суммы. На этом уроке вы узнаете, как выделить из многочлена полный квадрат.

Этот многочлен можно преобразовать следующим образом.

6а мы представим в виде удвоенного произведения двух множителей: 3 и a:

Далее применим формулу квадрата суммы для двучлена а +3.

Таким образом, получили равенство:

Представим 10у как удвоенное произведение 5 и у:

Применим формулу квадрата разности для двучлена

Выделение полного квадрата используется, например, при доказательстве неравенств или определения знака выражения. Например:

Доказать, что для любых чисел а и в верно неравенство

В левой части неравенства две переменных, поэтому разделим одночлены на две группы. Число 45 можно добавить в любую группу, например, в группу, где переменная b.

Сложим два полученных выражения. В результате получим сумму двух квадратов двучленов:

то и сумма этих выражений будет положительной либо равна нулю. Что и требовалось доказать.

Материал для углублённого изучения темы.

При выделении полного квадрата числа могут получаться не только целыми, но и дробными.

Разбор заданий тренировочного модуля.

Объяснение: число 6 не является квадратом целого числа, поэтому удобнее вынести его за скобку:

2. Представьте выражение в виде суммы квадратов:

Объяснение: разделим выражение на две группы. Число 50 можем присоединить к любой группе, например к группе, где переменная m.

Получим сумму квадрата двучлена m + 5 и числа 25:

Во второй группе представим 10n как удвоенное произведение 5 и n, прибавим и вычтем 25:

Получим сумму квадрата двучлена n + 5 и числа -25:

Квадратные уравнения

Решение неполных квадратных уравнений
Выделение полного квадрата
Дискриминант
Разложение квадратного трехчлена на множители
Формула для корней квадратного уравнения
Прямая и обратная теоремы Виета

Квадратным трёхчленом относительно переменной x называют многочлен

ax 2 + bx + c ,(1)

где a, b и c – произвольные вещественные числа, причем

Квадратным уравнением относительно переменной x называют уравнение

ax 2 + bx + c = 0,(2)

где a, b и c – произвольные вещественные числа, причем

Полным квадратным уравнением относительно переменной x называют уравнение

где a, b и c – произвольные вещественные числа, отличные от нуля.

Неполными квадратными уравнениями называют квадратные уравнения следующих типов:

Решение неполных квадратных уравнений

Покажем, как решаются неполные квадратные уравнения на примерах.

Пример 1 . Решить уравнение

Пример 2 . Решить уравнение

2x 2 + 3x= 0 .(3)

Решение . Вынося в левой части уравнения (3) переменную x за скобки, перепишем уравнение в виде

x (2x+ 3) = 0 .(4)

Поскольку произведение двух сомножителей равно нулю тогда и только тогда, когда, или первый сомножитель равен нулю, или второй сомножитель равен нулю, то из уравнения (4) получаем:

Ответ : .

Пример 3 . Решить уравнение

Ответ : .

Пример 4 . Решить уравнение

3x 2 + 11 = 0 .(5)

Решение . Поскольку левая часть уравнения (5) положительна при всех значениях переменной x , а правая часть равна 0, то уравнение решений не имеет.

Ответ : .

Выделение полного квадрата

Выделением полного квадрата называют представление квадратного трёхчлена (1) в виде:

Для того, чтобы получить формулу (6), совершим следующие преобразования:

Формула (6) получена.

Дискриминант

Дискриминантом квадратного трёхчлена (1) называют число, которое обозначается буквой D и вычисляется по формуле:

D = b 2 – 4ac.(7)

Дискриминант квадратного трёхчлена играет важную роль, и от того, какой знак он имеет, зависят различные свойства квадратного трёхчлена.

Используя дискриминант, формулу (6) можно переписать в виде

Разложение квадратного трёхчлена на множители

Утверждение . В случае, когда , квадратный трёхчлен (1) разлагается на линейные множители. В случае, когда D , квадратный трехчлен нельзя разложить на линейные множители.

Доказательство . В случае, когда D = 0 , формула (8) и является разложением квадратного трехчлена на линейные множители:

(9)

В случае, когда D > 0 , выражение, стоящее в квадратных скобках в формуле (8), можно разложить на множители, воспользовавшись формулой сокращенного умножения «Разность квадратов»:

Таким образом, в случае, когда D > 0 , разложение квадратного трехчлена (1) на линейные множители имеет вид

В случае, когда D , выражение, стоящее в квадратных скобках в формуле (8), является суммой квадратов и квадратный трёхчлен на множители не раскладывается.

Замечание . В случае, когда D , квадратный трехчлен всё-таки можно разложить на линейные множители, но только в области комплексных чисел, однако этот материал выходит за рамки школьного курса.

Формула для корней квадратного уравнения

Из формул (9) и (10) вытекает формула для корней квадратного уравнения .

Действительно, в случае, когда D = 0 , из формулы (9) получаем:

Следовательно, в случае, когда D = 0 , уравнение (1) обладает единственным корнем, который вычисляется по формуле

(11)

В случае, когда D > 0 , из формулы (10) получаем:

Таким образом, в случае, когда D > 0 , уравнение (1) имеет два различных корня , которые вычисляются по формулам

(12)
(13)

Замечание 1 . Формулы (12) и (13) часто объединяют в одну формулу и записывают так:

(14)

Замечание 2 . В случае, когда D = 0 , обе формулы (12) и (13) превращаются в формулу (11). Поэтому часто говорят, что в случае, когда D = 0 , квадратное уравнение (1) имеет два совпавших корня , вычисляемых по формуле (11), а саму формулу (11) переписывают в виде:

(15)

Замечание 3 . В соответствии с материалом, изложенным в разделе «Кратные корни многочленов», корень (11) является корнем уравнения (1) кратности 2.

В случае, когда D = 0 , разложение квадратного трехчлена на линейные множители (9) можно переписать по-другому, воспользовавшись формулой (15):

ax 2 + bx + c =
= a (x – x1) 2 .
(16)

В случае, когда D > 0 , разложение квадратного трехчлена на линейные множители (10) с помощью формул (12) и (13) переписывается так:

ax 2 + bx + c =
= a (x – x1) (x – x2) .
(17)

Замечание 4 . В случае, когда D = 0 , корни x1 и x2 совпадают, и формула (17) принимает вид (16).

Прямая и обратная теоремы Виета

Раскрывая скобки и приводя подобные члены в правой части формулы (17), получаем равенство

Отсюда, поскольку формула (17) является тождеством, вытекает, что коэффициенты многочлена

равны соответствующим коэффициентам многочлена

Таким образом, справедливы равенства

следствием которых являются формулы

(18)

Формулы (18) и составляют содержание теоремы Виета (прямой теоремы Виета) .

Словами прямая теорема Виета формулируется так: – «Если числа x1 и x2 являются корнями квадратного уравнения (1), то они удовлетворяют равенствам (18)».

Обратная теорема Виета формулируется так: – «Если числа x1 и x2 являются решениями системы уравнений (18), то они являются корнями квадратного уравнения (1)».

Для желающих ознакомиться с примерами решений различных задач по теме «Квадратные уравнения» мы рекомендуем наше учебное пособие «Квадратный трехчлен».

Графики парабол и решение с их помощью квадратных неравенств представлены в разделе «Парабола на координатной плоскости. Решение квадратных неравенств» нашего справочника.

Выделение полного квадрата – формулы, методы и примеры решений

Основные способы решения полных квадратных уравнений

  • Авторы
  • Руководители
  • Файлы работы
  • Наградные документы

Автор работы награжден дипломом победителя III степени

Актуальность выбранной темы продиктована желанием показать разнообразие способов решения квадратных уравнений. Необходимость решать уравнения первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площади земельного участка и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Начиная с 8 класса, умение решать квадратные уравнения является основополагающим, так как они находят широкое применение в решении тригонометрических, логарифмических, иррациональных, показательных и других видов уравнений. Квадратное уравнение широко распространено: во многих строительных и архитектурных расчётах, сооружениях, спорте, описании траектории движения планет. Поэтому исследование способов решения полных квадратных уравнений считаю актуальным.

Проблема: какие существуют способы решения полных квадратных уравнений?

Цель работы: изучить и систематизировать способы решения полных квадратных уравнений.

Изучить литературу по теме исследования.

Выбрать и изучить способы решения полных квадратных уравнений.

Объект исследования: полные квадратные уравнения.

Методы исследования: теоретический (изучение литературы), математический (построение графиков, вычисления).

Рассмотрим основные способы решения таких уравнений в нашей работе.

2.1 Квадратное уравнение: определение, виды, способы решения

Квадратным уравнением называется уравнение вида ax ² + bx + c =0, где х-переменная, a , b и c – некоторые числа, причём а¹0. Коэффициенты имеют свои названия: а – первый или старший коэффициент, в – второй коэффициент, с – свободный член. Если а=1, то уравнение называется приведённым. Если в=0 или с=0, то квадратное уравнение называют неполным (рис.1).

Рис.1 Виды квадратных уравнений

Примеры полных квадратных уравнений: 3x 2 -5x+2=0, x 2 -16x+24=0;

неполные: x 2 + 3x=0, 2x 2 – 128=0, 62x 2 = 0.

Корнями квадратного уравнения называются значения переменной, при которых уравнение обращается в верное равенство. Квадратное уравнение может иметь два, один или ни одного корня. [1]

В школьном курсе математики изучается несколько способов решения полных квадратных уравнений. Однако имеются и другие способы, которые позволяют очень быстро и рационально решать многие уравнения, всего насчитывается более десятка способов. Рассмотрим основные: решение квадратных уравнений по формуле, решение уравнения выделением полного квадрата, решение уравнения путём разложения левой части на множители, решение с помощью теоремы Виета и графический способ. Но сначала обратимся к историческим сведениям: как давно возникли квадратные уравнения и как их решали раньше?

2.2 Из истории квадратных уравнений

Квадратные уравнения в Индии.

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499г. индийским математиком и астрономом Ариабахаттой. Другой индийский ученый, Брахмагупта ( VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ах 2 + b х = с, а > 0

В уравнении все коэффициенты, кроме а, могут быть отрицательными. Правило Брахмагупта (приложение 1) по существу совпадает с ныне существующими.

Квадратные уравнения в Древнем Вавилоне

Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Если применить современную алгебраическую запись, то в их клинописных текстах можно встретить неполные и полные квадратные уравнения, например:

х 2 + х = , х 2 – х = 14

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. [5]

Квадратные уравнения в Европе XIII XVII вв.

Формулы решения квадратных уравнений по образцу аль-Хорезми (приложение 1) в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардо Фибоначчи. Этот объемный труд, в котором отражено влияние математики как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошёл к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI – XVII вв. и частично XVIII век.

Общее правило решения квадратных уравнений, приведённых к единому каноническому виду

при всевозможных комбинациях знаков коэффициентов b и с было сформулировано в Европе лишь в 1544г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, кроме положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других учёных способ решения квадратных уравнений принимает современный вид. [3]

2.3 Решение квадратных уравнений по формуле

Решение квадратных уравнений сводится к нахождению дискриминанта, чтобы определить количество корней: D=b 2 – 4aс.

Если D>0, то уравнение имеет два корня и находим эти корни по формуле:

Если D=0, то уравнение имеет один корень

Рассмотрим пример 1: нужно найти корни уравнения 3x 2 – 2x – 16=0.

Записываем сначала, чему равны числовые коэффициенты a, b и c:

a=3,b= -2,c= -16. Находим дискриминант: D=b 2 -4ac = (-2) 2 -4∙2∙(-16)=4+192=196

Дискриминант больше нуля, следовательно, у нас два корня, найдем их:

Х1= (2 – 14) /6 = -2 Х2 = (2 + 14) /6 = 8/3

Рассмотрим пример 2: найти корни уравнения x 2 – 6x + 11=0.

a=1,b= -6,c= 11. Находим дискриминант: D=b 2 -4ac = (-6) 2 -4∙1∙11= 36 – 44= – 8

Дискриминант меньше нуля, следовательно, корней нет.

Ответ: корней нет.

Рассмотрим пример 3: найти корни уравнения 4x 2 – 12x + 9=0.

a=4,b= -12,c= 9. Находим дискриминант: D=b 2 -4ac = (-12) 2 -4∙4∙9= 144 -144= 0

Дискриминант равен нулю, следовательно, у нас один корень:

2.4 Решение квадратных уравнений методом выделения полного квадрата

Поясним этот метод на примере 4: решим уравнение х 2 + 6х – 7 = 0.

Выделим в левой части полный квадрат. Для этого запишем выражение

х 2 + 6х в виде: х 2 + 6х = х 2 + 2· х ·3.

В полученном выражении первое слагаемое – квадрат числа х, а второе – удвоенное произведение х на 3, поэтому, чтобы получить полный квадрат, нужно прибавить 3 2 , так как х 2 + 2· х ·3 + 3 2 = (х + 3) 2 .

Преобразуем теперь левую часть уравнения х 2 + 6х – 7 = 0, прибавляя к ней и вычитая 3 2 . Имеем:

х 2 + 6х – 7 = х 2 + 2· х ·3 + 3 2 – 3 2 – 7 = (х + 3) 2 – 9 – 7 = (х + 3) 2 – 16.

Таким образом, данное уравнение можно записать так:

(х + 3) 2 –16 = 0, т.е. (х + 3) 2 = 16.

Следовательно, х + 3 = 4, х1 = 1, или х + 3 = – 4 , х2 = – 7.

2.5 Разложение левой части квадратного уравнения на множители

Рассмотрим пример 5: решим уравнение х 2 + 10х – 24 = 0.

Разложим левую часть уравнения на множители:

х 2 + 10х – 24 = х 2 + 12х – 2х – 24 = х(х + 12) – 2(х +12) = (х + 12)(х – 2).

Следовательно, уравнение можно переписать так:

Так как произведение равно нулю, то, по крайне мере один из его множителей равен нулю. Поэтому левая часть уравнения обращается в нуль при х = 2, а также при х = – 12. Это означает, что числа 2 и – 12 являются корнями уравнения х 2 + 10х – 24 = 0.

2.6 Графический способ решения

Если в уравнении x 2 + bx + c = 0

перенести второй и третий члены в правую часть, то получим x 2 = – bx – c .

Построим графики зависимостей у = х 2 и у = – bx – c .

График первой зависимости – парабола, проходящая через начало координат.

График второй зависимости – прямая. Возможны следующие случаи:

прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

прямая и парабола могут касаться (только одна общая точка), т.е. уравнение имеет одно решение;

прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней. [2]

Пример 6: решим графически уравнение х 2 –3х – 4 = 0.

Запишем уравнение в виде х 2 = 3х + 4. Построим параболу у = х 2 и прямую у = 3х + 4. Прямую у = 3х + 4 можно построить по двум точкам М(0;4) и N (3;13).

Прямая и парабола пересекаются в двух точках А и B с абсциссами х1 = – 1 и х2 = 4. (Рис.2)

2.7 Решение квадратных уравнений с помощью теоремы Виета

1. Приведенное квадратное уравнение имеет вид х 2 + px + q = 0.

Его корни удовлетворяют теореме Виета, которая при а = 1 имеет вид

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

Если свободный член q приведенного уравнения положителен ( q >0), то уравнение имеет два одинаковых по знаку корня и это зависит от второго коэффициента p .

Если p >0, то оба корня отрицательные, если p 2 – 3х + 2 = 0; х1 = 2 и х2 = 1, так как q = 2 > 0 и p = – 3 2 +8х + 7 = 0; х1 = – 7 и х2 = – 1, так как q = 7 > 0 и p = 8 >0.

Если свободный член q приведенного уравнения отрицателен ( q p p >0.

х 2 + 4х – 5 = 0; х1 = – 5 и х2 = 1, так как q = – 5 p = 4 > 0;

х 2 – 8х – 9 = 0; х1 = 9 и х2 = – 1, так как q = – 9 p = – 8 >0.

2. Теорема Виета для квадратного уравнения ах 2 + b х +с = 0 имеет вид

Справедлива теорема, обратная теореме Виета:

Если числа х1 и х2 таковы, что х12 = – b , х1х2 = c , то х1 и х2 – корни квадратного уравнения х 2 + b х + c = 0.

Эта теорема позволяет в ряде случаев находить корни квадратного уравнения без использования формулы корней. [4]

Пример 7: решим уравнение х 2 – 9х + 14 =0.

Найдём два числа х1 и х2 , такие, что

Такими числами являются 2 и 7. По теореме, обратной теореме Виета, они и служат корнями заданного квадратного уравнения.

При решении квадратного уравнения не надо ограничиваться одним

способом решения уравнения, который изучается в школьном курсе математики, а для каждой ситуации можно использовать свой способ решения.

Особенно популярным способом является решение квадратного уравнения по формуле и теорема Виета. Изучив материалы для подготовки к ГИА, я пришла к выводу: материалы содержат много квадратных уравнений, при решении которых можно использовать различные способы.

Интересным для меня оказался графический способ решения квадратного уравнения. Но недостаток этого способа – не всегда значения абсцисс точек пересечения графиков будут являться целыми и точными значениями.

Более подробно изучив тему «Решение полных квадратных уравнений», я углубила знания в истории развития математики и открыла много полезного и нового для себя. Кроме вышеперечисленных мною основных способов решения квадратных уравнений в разных источниках выделяют ещё: решение уравнений способом «переброски», решение с помощью циркуля и линейки, решение с помощью номограммы, геометрический способ и использование свойств коэффициентов квадратного уравнения.

Такая широкая тема позволяет всем желающим находить в книгах, научных журналах, сайтах всё новые пути решения уравнений, создавать основу для дальнейших исследований в мире математики, получать необходимые интересующие сведения, применение которых на практике способствует развитию мышления и повышению уровня знаний. Каждый из способов удобен по-своему, интересен и значим в общей копилке умений каждого.

Список использованных источников и литературы

Мерзляк А.Г. Алгебра: 8 класс: учебник для общеобразовательных организаций/А.Г.Мерзляк, В.Б.Полонский, М.С.Якир. – М.:Вентана – Граф, 2017.

Окунев А.К. Квадратичные функции, уравнения и неравенства / Пособие для учителя. – М.: Просвещение, 2016.

Соломник В.С., Милов П.И. Сборник вопросов и задач по математике. Изд. – 4-е, дополн. – М.: Высшая школа, 2017.

Якушева Г.Н. Математика. Справочник школьника. – М., Просвещение, 2015.

История возникновения квадратных уравнений: [Электронный ресурс]. URL : https://ru.wikipedia.org/wiki/Квадратное_уравнение (Дата обращения 26.03.2019).

Приложение 1

Индийский математик Брахмагупта и среднеазиатский учёный, математик, астроном Абу́ Абдулла́х Муха́ммад ибн Муса́ аль-Хорезми́

Выделение полного квадрата – формулы, методы и примеры решений

На данном уроке мы вспомним все ранее изученные методы разложения многочлена на множители и рассмотрим примеры их применения, кроме того, изучим новый метод – метод выделения полного квадрата и научимся применять его при решении различных задач.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Упрощение выражений»

Тема: Разложение многочленов на множители

Урок: Разложение многочленов на множители. Метод выделения полного квадрата. Комбинация методов

Напомним основные методы разложения многочлена на множители, которые были изучены ранее:

-Метод вынесения общего множителя за скобки, то есть такого множителя, который присутствует во всех членах многочлена. Рассмотрим пример:

;

Напомним, что одночлен есть произведение степеней и чисел. В нашем примере в обоих членах есть некоторые общие, одинаковые элементы.

Итак, вынесем общий множитель за скобки:

;

Напомним, что перемножив вынесенный множитель на скобку можно проверить правильность вынесения.

-Метод группировки. Не всегда в многочлене можно вынести общий множитель. В таком случае нужно его члены разбить на группы таким образом, чтобы в каждой группе можно было вынести общий множитель и постараться разбить так, чтобы после вынесения множителей в группах появился общий множитель у всего выражения, и можно было бы продолжить разложение. Рассмотрим пример:

;

Сгруппируем первый член с четвертым, второй с пятым, и третий соответственно с шестым:

;

Вынесем общие множители в группах:

;

У выражения появился общий множитель. Вынесем его:

;

– Применение формул сокращенного умножения. Рассмотрим пример:

;

Распишем выражение подробно:

;

Очевидно, что перед нами формула квадрата разности, так как есть сумма квадратов двух выражений и из нее вычитается их удвоенное произведение. Свернем по формуле:

;

Сегодня мы выучим еще один способ – метод выделения полного квадрата. Он базируется на формулах квадрата суммы и квадрата разности. Напомним их:

– формула квадрата суммы(разности);

Особенность этих формул в том, что в них есть квадраты двух выражений и их удвоенное произведение. Рассмотрим пример:

;

;

Итак, первое выражение это , а второе .

Для того, чтобы составить формулу квадрата суммы или разности не хватает удвоенного произведения выражений. Его нужно прибавить и отнять:

;

Свернем полный квадрат суммы:

;

Преобразуем полученное выражение:

;

Применим формулу разности квадратов, напомним, что разность квадратов двух выражений есть произведение и суммы на их разность:

;

Итак, данный метод заключается, прежде всего, в том, что нужно выявить выражения a и b, которые стоят в квадрате, то есть определить, квадраты каких выражений стоят в данном примере. После этого нужно проверить наличие удвоенного произведения и если его нет, то прибавить и отнять его, от этого смысл примера не изменится, но многочлен можно будет разложить на множители, используя формулы квадрата суммы или разности и разности квадратов, если есть такая возможность.

Перейдем к решению примеров.

Пример 1 – разложить на множители:

;

Найдем выражения, которые стоят в квадрате:

;

Запишем, каким должно быть их удвоенное произведение:

;

Прибавим и отнимем удвоенное произведение:

;

Свернем полный квадрат суммы и приведем подобные::

;

Распишем по формуле разности квадратов:

;

Пример 2 – решить уравнение:

;

В левой части уравнения стоит трехчлен. Нужно разложить его на множители. Используем формулу квадрата разности :

;

У нас есть квадрат первого выражения и удвоенное произведение, не хватает квадрата второго выражения, прибавим и отнимем его:

;

Свернем полный квадрат и приведем подобные члены:

;

Применим формулу разности квадратов:

;

Итак, имеем уравнение

Мы знаем, что произведение равно нулю только если хотя бы один из множителей равен нулю. Составим на этом основании уравнения:

или

Решим первое уравнение:

, ;

Решим второе уравнение:

, ;

Ответ: или

;

Поступаем аналогично предыдущему примеру – выделяем квадрат разности:

;

Применяем формулу разности квадратов:

;

Получили уравнение

Значит или , или ;

Вывод: мы рассмотрели новый метод разложения многочлена на множители – метод выделения полного квадрата, он базируется на знании и формул сокращенного умножения. Мы выполнили несколько различных примеров на закрепление техники применения данного метода.

Список рекомендованной литературы

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

Рекомендованные ссылки на ресурсы интернет

1. Школьный помощник (Источник).

2. ЕГЭ по математике (Источник).

Рекомендованное домашнее задание

Задание 1: Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7, № 382, ст.135;

Задание 2 – выделить полный квадрат: а) ; б) ; в) ; г)

Задание 3 – решить уравнение: а) ; б) ; в)

10 способов решения квадратных уравнений

Исследовательская работа по теме “10 способов решения квадратных уравнений”

Скачать:

ВложениеРазмер
10_sposobov_resheniya_kvadratnykh_uravneniy.doc748 КБ

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа № 59»

10 способов решения квадратных уравнений

Выполнила: ученица 8А класса

МБОУ «СОШ № 59г.Барнаула

Захарова Людмила Владимировна,

учитель математики, МБОУ «СОШ № 59»

I. История развития квадратных уравнений ……………………………. 3

1. Квадратные уравнения в Древнем Вавилоне……………………………. 4

2. Как составлял и решал Диофант квадратные уравнения…………………5

3. Квадратные уравнения в Индии……………………………………………6

4. Квадратные уравнения у ал- Хорезми …………………………………….7

5. Квадратные уравнения в Европе XIII – XVII вв………………. 9

II. Способы решения квадратных уравнений ………………………. 11

  1. Разложение левой части уравнения на множители………………. 12
  2. Метод выделения полного квадрата.……………………….……. 13
  3. Решение квадратных уравнений по формулам …………………..………14
  4. Решение уравнений с использованием теоремы Виета……………. 16

5.Решение уравнений способом переброски»……………………………….18

  1. Свойства коэффициентов квадратного уравнения……………………. 19

7.Графическое решение квадратного уравнен……………………..……….. 21

8.Решение квадратных уравнений с помощью циркуля и линейки……….. 24

9.Решение квадратных уравнений с помощью номограммы………………. 26

10. Геометрический способ решения квадратных уравнений……………….28

Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу тремя различными способами, чем решить три-четыре различные задачи. Решая одну задачу различными методами, можно путем сравнений выяснить, какой из них короче и эффективнее. Так вырабатывается опыт»

Теория уравнений в школьном курсе алгебры занимает ведущее место. На их изучение отводится времени больше, чем на любую другую тему школьного курса математики. Это связано с тем, что большинство жизненных задач сводится к решению различных видов уравнений.

В учебнике алгебры для 8 класса мы знакомимся с несколькими видами квадратных уравнений, и отрабатываем их решение по формулам. У меня возник вопрос «Существуют ли другие методы решения квадратных уравнений? Насколько сложны данные методы и можно ли ими пользоваться на практике?» Поэтому в этом учебном году я выбрала тему исследования связанную с квадратными уравнениями, в ходе работы она получила название «10 способов решения квадратных уравнений». Актуальность этой темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе и в 9 классе при сдаче экзаменов.

Цель работы: научиться решать квадратные уравнения, изучить различные методы их решения.

Исходя из данной цели, мною были поставлены следующие задачи:

– изучить историю развития квадратных уравнений;

– рассмотреть стандартные и нестандартные методы решения квадратных уравнений;

– выявить наиболее удобные способы решения квадратных уравнений;

– научиться решать квадратные уравнения различными способами.

Объект исследования : квадратные уравнения.

Предмет исследования : с пособы решения квадратных уравнений.

Теоретические: изучение литературы по теме исследования;

Анализ: информации полученной при изучении литературы;

результатов полученных при решении квадратных уравнений различными способами.

Сравнение способов на рациональность их использования при решении квадратных уравнений.

Ссылка на основную публикацию