Консервативные и неконсервативные силы: определение и примеры

Потенциальная энергия. Консервативные и неконсервативные силы.

Потенциальная энергия —скалярная физическая величина, представляющая собой часть полной механической энергии системы, находящейся в поле консервативных сил. Потенциальная энергия определяется взаимным положением тел (например, положением тела относительно поверхности Земли). Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения и определяется только начальным и конечным положениями тела. (P.S.: (простыми словами)- это вид энергии, которой обладает тело, благодаря его положению на определенной высоте в гравитационном поле Земли. Потенциальной энергией также является энергия, запасенная в такой системе, как сжатая пружина, или в колеблющейся системе, например, в маятнике).

Единицей измерения энергии является джоуль.

Wп — Потенциальная энергия тела, энергия положения (Джоуль),
G — гравитационная сила (Ньютон),
m — масса тела (кг),
h — высота на которую поднято тело (метр)
g — ускорение свободного падения= 9.81 (м/c 2 )

В физике консервати́вные си́лы (потенциальные силы) — это силы, работа которых не зависит от вида траектории, точки приложения этих сил и закона их движения, и определяется только начальным и конечным положением этой точки. Равносильным определением является и следующее: консервативные силы — это такие силы, работа которых по любой замкнутой траектории равна 0.

A 1a2 = A 1b2 = A 1l2 = A 12

Примерами консервативных сил являются: сила тяжести, сила упругости, сила кулоновского (электростатического) взаимодействия. Если в системе действуют только консервативные силы, то механическая энергия системы сохраняется. Консервативная сила всегда направлена в сторону уменьшения потенциальной энергии.

Неконсервативные силы – силы, работа которых зависит от траектории движения тела. Работа неконсервативных сил, в отличие от консервативных, зависит от формы пути. Неконсервативные силы могут совершать как положительную, так и отрицательную работу(не равняются нулю). К неконсервативным силам, совершающим отрицательную работу, относятся, например, силы трения и сопротивления при движении тела в жидкости или газе. Это обусловлено тем, что направление действия этих сил и направление перемещения тела противоположны.

10 Закон сохранения механической энергии

Механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии диссипативных сил (например, сил трения) механическая энергия не возникает из ничего и не может никуда исчезнуть.
Для замкнутой системы физических тел, например, справедливо равенство
Ek1 + Ep1 = Ek2 + Ep2,
где Ek1, Ep1 — кинетическая и потенциальная энергии системы какого-либо взаимодействия, Ek2, Ep2 — соответствующие энергии после.
Закон сохранения энергии — это интегральный закон. Это значит, что он складывается из действия дифференциальных законов и является свойством их совокупного действия.Формулировка закона сохранения механической энергии.

Полная механическая энергия, т.е. сумма потенциальной и кинетической энергии тела, остается постоянной, если действуют только силы упругости и тяготения и отсутствуют силы трения.Энергия, в самом общем понимании, является одной из функций состояния тела. Состояние тела определяется его массой, положением относительно других тел, скоростью и другими параметрами.

Чтобы изменилась кинетическая или потенциальная энергия тела, какой-то силой должна быть совершена работа: A = E2E1.

Рассмотрим изолированную систему, в которой телам предоставлена возможность двигаться под действием внутренних сил. В качестве простейшего примера возьмем свободно падающее тело. На высоте h1 тело обладает и кинетической, и потенциальной энергией. При перемещении на высоту h2 сила тяжести совершает работу, равную Вся эта работа идет на изменение кинетической энергии тела:

Так как равны левые части записанных уравнений, равны и правые части:

После перегруппировки членов полученного уравнения, имеем:

Сумма потенциальной и кинетической энергии системы тел называется полной механической энергией системы: W = Ek + Ep.

Согласно полученному выражению, в изолированной системе тел полная механическая энергия остается постоянной, в системе могут лишь происходить превращения энергии из одного вида в другой.

Дата добавления: 2019-02-22 ; просмотров: 966 ; Мы поможем в написании вашей работы!

Консервативные и неконсервативные силы.

Консервативными называются силы, работа которых не зависит от формы траектории, а определяется только положением её начальной и конечной точек.

Работа на замкнутой траектории равна нулю:

К консервативным силам относятся: сила тяжести, гравитационная сила, сила упругости и другие силы.

Примером может служить скольжение без трения материальной точки по гладкой наклонной плоскости. Очевидно, эта работа равна A1,2=mgscosα, или
A1,2=mg(h1−h2)=mgh1−mgh2, (1.24.1)

Формула (1.24.1) остается справедливой и при перемещении вдоль произвольной кривой, например по пути .Это станет очевидным, если разбить весь путь горизонтальными плоскостями на малые участки, каждый из которых может быть принят за прямолинейный. Применив к каждому участку формулу (1.24.1) и сложив полученные работы, мы придем к прежнему результату (1.24.1). Если вместо пути взять любой другой путь между теми же начальным и конечным положениями 1 и 2, то работа силы тяжести не изменится, так как она определяется только разностью высот h1−h2, которая от формы пути не зависит. Таким образом, работа силы тяжести не зависит от формы пути, а определяется только начальным и конечным положениями перемещающейся точки.

Неконсервативнымисилами называются силы, работа которых зависит от пути перехода тела или системы из начального положения в конечное.

Работа этих сил на замкнутой траектории отлична от нуля. К неконсервативным силам относятся: сила трения, сила тяги и другие силы.

Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести: Fт=GMm/R 2 (2.28)
Если на тело действует только сила тяжести, а все другие силы взаимно уравновешены, тело совершает свободное падение. Согласно второму закону Ньютона и формуле (2,28) модуль ускорения свободного падения g находят по формуле: g=Fт/m=GM/R 2 . (2.29)

Из формулы (2.29) следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково. Из формулы (2.29) следует, что Fт = mg. В векторном виде: Fт=mg (2.30)

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости.

При малых деформациях (|x| 0. Если тело переместилось из точки, расположенной на высоте h1, в точку, расположенную на высоте h2 от начала координатной оси OY ,то сила тяжести совершила работу

A = –mg (h2 – h1) = –(mgh2 – mgh1).

Эта работа равна изменению некоторой физической величины mgh, взятому с противоположным знаком. Эту физическую величину называют потенциальной энергией тела в поле силы тяжести

Eр = mgh.

Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень.

Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком.

A = –(Eр2 – Eр1).

Потенциальная энергия гравитационного взаимодействия

Потенциальная энергия гравитационного взаимодействия системы двух материальных точек с массами т и М, находящихся на расстоянии r одна от другой, равна

(11)

где G – гравитационная постоянная, а нуль отсчета потенциальной энергии (Еp = 0) принят при r = ∞. Потенциальная энергия гравитационного взаимодействия тела массой т с Землей, где h – высота тела над поверхностью Земли, М3 – масса Земли, R3 – радиус Земли, а нуль отсчета потенциальной энергии выбран при h = 0.

(12)

При том же условии выбора нуля отсчета потенциальная энергия гравитационного взаимодействия тела массой т с Землей для малых высот h (h « R3) равна

Потенциальная энергия взаимодействия двух точечных зарядов равна Wпот=kq1q2/r

8)

Полная механическая энергия системы – это сумма её кинетической и потенциальной энергией: E = Eк + Eп. Её вид может выглядеть так: E = (mv^2)/2 + mgh (для случая свободного падения тела). По закону сохранения энергии, эта сумма всегда остаётся неизменной, если, конечно, часть энергии не будет отводиться во внутреннюю, но это уже – не механическая, а тепловая энергия. Полная механическая энергия определяется именно суммой Eк + Eп, её изменение связано с переходом части механической энергией в энергию других физических взаимодействий. Если же такие взаимодействия не проявляются, то полная механическая энергия всегда сохраняется. Изменение кинетической энергии системы равно суммарной работе всех сил, действующих на тела этой системы

Изменение потенциальной энергии системы равно работе потенциальных сил с обратным знаком :

Очевидно, что изменение полной механической энергии равно:

Из уравнений получим, что изменение полной механической энергии равно суммарной работе всех внешних сил и внутренних непотенциальных сил.
∆Eк = Aвнеш.с.+ Aнепот.с.

Или
Мы пришли к следующему важному выводу:

Работа, совершаемая внешними неконсервативными силами при переходе системы из одного состояния в другое, равна изменению механической энергии системы.

Закон сохранения механической энергии :

Механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии диссипативных сил (например, сил трения) механическая энергия не возникает из ничего и не может никуда исчезнуть.
Для замкнутой системы физических тел, например, справедливо равенство
Ek1 + Ep1 = Ek2 + Ep2,
где Ek1, Ep1 — кинетическая и потенциальная энергии системы какого-либо взаимодействия, Ek2, Ep2 — соответствующие энергии после.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ – конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Закон преломления света — формулировка и физический смысл

Практически ежедневно человек сталкивается с явлением изменения направления солнечного потока. Это происходит после попадания светового пучка на поверхность водной среды из воздуха. Одиночный пучок отражается от границы, а второй — проникает в новые условия, как правило, искажая уклон полосы. Голландский ученый Снелл, который сформулировал закон преломления света, указал причину модификации фотометрической линии.

Геометрическая оптика

Оптика — огромный раздел в физике, включающий в себя изучение происхождения лучей и контакт полос света с веществами различной природы. Часть оптики, рассматривающая принципы направления солнечного света в гомогенной среде, называется лучевой. Чтобы тщательно разобраться в закономерностях распределения полос, необходимо определить предмет изучения геометрической оптики.

Термин «свет»

Предметы, которые доступны человеческому глазу без дополнительных оптических приборов, находятся в узком диапазоне видимого света. Близкие по частоте длины волн принадлежат ультрафиолетовому и инфракрасному излучениям. Например, семейство пчелиных распознают колебания ультрафиолетовых волн.

Световые лучи имеют различное происхождение. Тепловые материалы достигают температуры 1000−1600 градусов Цельсия, а также способны изменять цвет в зависимости от термического градиента. Источники люминесцентного свечения (экраны смартфонов, некоторые семейства насекомых, газоразрядные лампы) выделяют «холодный свет», поэтому пользуются большим спросом в быту.

Потоки обладают отражательными и преломляющими способностями. В повседневной жизни человек непременно сталкивается с доказательствами законов лучевой оптики. Самые популярные примеры:

  • свойство водоемов искажать солнечные потоки;
  • получение бликов на металлической поверхности с помощью портативных генераторов;
  • освещение дорожного пути фарами автомобилей;
  • изменение формы предметов, погруженных в емкости с водой;
  • построение изображений с помощью зеркал.

Существует две теории происхождения световых потоков. Согласно волновому принципу, лучи в физике — волны электрической или магнитной природы. Представители корпускулярной доктрины считают, что солнечные полосы — это множество частиц, которые обладают значительной энергией и способны перемещаться в вакууме.

Принципы распространения лучей

Изучение формулировок законов, связанных с перемещением света в пространстве, начинают ещё в 10−11-м классе. Учителя физики используют для наглядных примеров стеклянную емкость с водой и портативный генератор. Направляя луч лазера через призму, ученики убедятся в том, что пучки перемещаются прямолинейно.

В геометрической оптике выделяют четыре главных правила перемещения световых полос:

  • Явление распределения света — в гомогенной среде лучи распространяются прямолинейно. Ученый, раскрывший законы распространения света, — Евклид, который жил в Древней Греции в III веке до нашей эры.
  • Правило отражения световых полос — нисходящий и отраженный лучи находятся в единой плоской поверхности, называемой поверхностью падения. Угол, образованный нисходящей линией и серединным отрезком, равен величине угла, созданным отраженным полосой и серединным отрезком. В физических формулах значение углов обозначают греческими буквами γ и α.
  • Закон преломления света в физике — нисходящий и искаженный лучи располагаются в единой плоскости. Результатом искажения световых полос является деформация формы или размеров различных предметов.
  • Явление независимости солнечных потоков — это действие, которое осуществляется одним из пучков, не оказывает влияния на оставшиеся лучи. Доказательством закона служит разбиение полос на единичные линии света благодаря специальным чертежам.

    Явление искажения световых полос открыл голландский математик и астроном Виллеброрд Снелл в XVII веке. Но многие физики считают, что закон был открыт намного раньше (в X веке) арабским ученым Сахль ибн Бишром. Экспериментально закон подтвердил французский механик Декарт, поэтому в литературных источниках Франции часто встречается словосочетание «закон Декарта».

    Искажение световых потоков

    Доказано, что полосы, проходя из воздушной среды в стекло, сильно искажается. Луч, попавший в воду из воздуха, лишь немного изменяет угол наклона. Для удобства определения коэффициента преломления был введен специальный термин — относительный параметр искажения. Условный параметр характеризует состояние воздуха и воды при прохождении солнечного отрезка через их границы. Коэффициент высчитывается по определенному математическому соотношению, но нет необходимости делать это самостоятельно, так как готовые таблицы есть в книгах по физике.

    Доказательства закона

    Искажение лучей при попадании из одной оптически однородной среды в другую зависит от скорости распределения света между средами. Изменение параметров движения в воздухе изображают через U1, а скорость в водной среде — U2. Предположим, что на поверхность водной глади попадает световой луч А1 с углом α между преломленной линией и перпендикуляром. С1 — отраженная часть луча с углом α между отраженной полосой и серединным отрезком.

    Луч В1 попадает на границу раздела двух сред через время Δ t. Чтобы определить значение времени, за которое световой пучок попадет на водную гладь, необходимо отрезок СВ разделить на U1.

    Когда напряжение дойдет до момента В, вторая электромагнитная волна в воде примет форму шара. Радиус сферы равен U2 Δ t. Чтобы выяснить, как будет двигаться световой луч в дальнейшем, необходимо провести специальный отрезок ВD.

    Нисходящая полоса А1А образует предельный угол α, который равен по величине углу САВ в фигуре АВС. Отсюда следует, что сторона СВ равна U1 Δ t или же стороне треугольника АВ*sinα.

    Угол искажения β равен углу АВD. Следовательно, сторона треугольника АD равна радиусу сферы. Разделив первое равенство на второе, легко понять, в чем физический смысл преломления света:

    sin α / sin β = n1/n2 = n21

    При увеличении или уменьшении нисходящего угла происходят изменения относительно угла искажения. Если величина нисходящего угла повышается, то второй угол также возрастает. Если пучок падает на поверхность емкости с достаточной плотностью, то искажающий угол, как правило, намного меньше падающего угла. Параметр рефракции среды относительно вакуума — абсолютный коэффициент искажения.

    Формула закона преломления света имеет различные формы записи:

    n1*sin θ = n2*sin θ

    Связь выражения n1*sin θ c n2*sin θ заключается в полном внутреннем отражении. Искажающая полоса исчезает, а нисходящий луч отражается от поверхности среды. Формулу закона Снелла часто используют, если длина электромагнитной волны небольшой величины.

    Практическое применение

    Искажение световых полос является основой для создания оптических телескопов, в которых для оформления пучков света применяют специальные линзы. Рефракторы используют в научной работе в качестве телескопов, зрительных труб, приборов для приближения дальних объектов.

    Спектрографы и другие зрительные инструменты применяются для визуального наблюдения спектра излучения. В биофизике углубленно рассматривают геометрическую оптику, чтобы правильно понимать акустические параметры. В устройствах для воспроизведения звуков очень важен показатель рефракции при изучении распределения звуков.

    Явление искажения пучков света применяется во многих медицинских сферах. Особенно при изучении строения и функционирования глаз человека, а также для лечения и корректировки таких заболеваний, как близорукость и дальнозоркость. Чтобы выписать пациенту рецепт на очки, офтальмолог обязан проверить зрение с помощью фороптора.

    Проведение диагностики позволяет выявить патологии искажения пучков света в глазу человека. Тест на форопторе включает в себя работу с линзами, которые имеют различную преломляющую способность. Для лечения и дальнейшей корректировки зрения специалисты назначают контактные линзы или очки.

    Преломление света. Физический смысл показателя преломления

    Урок 40. Физика 9 класс (ФГОС)

    В данный момент вы не можете посмотреть или раздать видеоурок ученикам

    Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

    Получите невероятные возможности

    Конспект урока “Преломление света. Физический смысл показателя преломления”

    Вы уже ранее знакомились с явлением преломления света. Напомним, что оно заключается в изменении направления распространения света при его переходе из одной среды в другую.

    Давайте вспомним некоторые понятия и законы, связанные с данным явлением. Для этого проведём простой опыт. В центре оптического диска закрепим тонкую стеклянную пластинку и направим на неё узкий пучок света. Как видим, небольшая часть света отразилась от пластинки, а часть света проникает через пластинку, меняя направление своего распространения.

    Проведём перпендикуляр к границе раздела двух сред в точке падения луча.

    Теперь вспомним, что луч света, идущий к границе раздела двух сред, называется падающим лучом.

    А угол между падающим лучом и перпендикуляром, восставленным в точке падения луча, называется углом падения.

    Луч света, проходящий во вторую среду, называется преломлённым лучом.

    А угол между перпендикуляром, восставленным к границе раздела двух сред в точке падения луча, и преломлённым лучом называется углом преломления.

    Теперь, опираясь на знания о природе света, мы сможем понять физическую причину явления преломления, а также объяснить и некоторые другие световые явления.

    Давайте вспомним основной закон, связанный с данным явлением — закон преломления света. Согласно ему, лучи падающий, преломлённый и перпендикуляр, проведённый к границе раздела двух сред в точке падения луча, лежат в одной плоскости. При этом отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред.

    Эту величину называют относительным показателем преломления для двух сред. Чем он больше, тем сильнее преломляется свет на границе раздела двух сред.

    Если свет переходит в какую-либо среду из вакуума, то отношение синуса угла падения к синусу угла преломления равно абсолютному показателю преломления второй среды (или просто, показателю преломления). В этом случае первой «средой» считается вакуум, абсолютный показатель преломления которого принят за единицу.

    Примечательно, что первые упоминания о преломлении света в воде и стекле встречаются в труде Клавдия Птолемея «Оптика», вышедшем в свет во 2 веке нашей эры. А непосредственно сам закон преломления света был открыт опытным путём голландским учёным Виллебрордом Снеллом ещё в 1621 году. Однако результаты многочисленных экспериментов по оптике им опубликованы не были. Позже, после смерти учёного, они были обнаружены в архивах Рене Декартом, который использовал их при изучении формирования одиночных и двойных радуг в 1637 году.

    После открытия закона преломления света некоторыми учёными была выдвинута гипотеза о том, что явление преломления света связано с изменением скорости света при переходе из одной среды в другую.

    В 1662 году французским математиком Пьером де Ферма, а также независимо от него в 1690 году голландским физиком Кристианом Гюйгенсом, теоретическими рассуждениями была доказана справедливость данной гипотезы. Различными методами они пришли к одному и тому же выводу: отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, равная отношению скоростей света в этих средах.

    Из записанного соотношения хорошо видно, что различие углов падения и преломления обусловлено тем, что скорость распространения света в различных средах различна.

    Говорят, что чем больше скорость распространения света в среде, тем меньше её оптическая плотность и наоборот.

    Обратим внимание на то, что оптическая плотность среды и плотность вещества — это не одно и тоже. Оптическая плотность среды характеризуется скоростью распространения света в ней. В то время, как плотность вещества — это величина, численно равная массе вещества в единице его объёма.

    Итак, из теоретических выводов Ферма и Гюйгенса следует, что относительный показатель преломления показывает, во сколько раз скорость света в первой по ходу луча среде отличается от скорости распространения света во второй среде.

    Следовательно, абсолютный показатель преломления будет показывать, во сколько раз скорость света в вакууме больше, чем в данном веществе.

    Значения абсолютных показателей преломления многих веществ уже давно посчитаны и занесены в таблицы физических справочников. Как видим, значение абсолютного показателя преломления любого вещества больше единицы.

    Отсюда следует, что скорость света в любом веществе меньше скорости света в вакууме.

    По числовым значениям показателей преломления можно судить и об оптической плотности среды. Например, показатель преломления воды примерно равен 1,33, а кремния — около 4. Значит кремний — среда оптически более плотная, чем вода. Иными словами, из двух сред оптически более плотной считается та, у которой показатель преломления больше (или та, в которой скорость света меньше).

    Теперь, на основании волновой теории света, п­опытаемся объяснить, почему же на границе раздела сред с изменением скорости света меняется и направление распространения световой волны.

    Итак, пусть на плоскую поверхность раздела двух сред (например, воздух—вода) падает плоская световая волна, фронт которой мы обозначим АВ.

    Если угол падения волны отличен от нуля, то различные точки фронта волны достигнут границы раздела сред в разное время. Первой до границы раздела доходит точка А фронта волны. Когда же границы раздела достигнет точка B, перемещаясь с прежней скоростью, точка А двигаясь в воде с меньшей скоростью, пройдёт меньшее расстояние, достигнув точки A. Как следствие, фронт волны в воде окажется повёрнутым на некоторый угол по отношению к фронту волны в воздухе. Тогда и вектор скорости, который всегда перпендикулярен фронту волны и совпадает с направлением её распространения, повернётся на тот же угол, приближаясь к перпендикуляру, проведённому к границе раздела сред. При этом угол преломления света оказывается меньше угла падения. Примерно вот так и происходит преломление света.

    Кстати, на основании похожих рассуждений о волновой природе света, Гюйгенсом и был выведен закон преломления света.

    Из нашего рисунка также видно, что при переходе света из одной среды в другую меняется и его длина волны. Так при переходе из оптически менее плотной среды в среду оптически более плотную, длина волны уменьшается. Это согласуется с известной нам формулой, связывающей скорость волны с её длиной и частотой колебаний, которая, как известно, не зависит от плотности среды и поэтому не меняется при переходе света из одной среды в другую. Поэтому уменьшение скорости распространения волны влечёт за собой уменьшение её длины.

    Интересно, что преломление света на границе двух сред даёт парадоксальный зрительный эффект: пересекающие границу раздела прямые предметы в более плотной среде выглядят образующими больший угол с нормалью к границе раздела (то есть преломлёнными «вверх»); в то время как луч, входящий в более плотную среду, распространяется в ней под меньшим углом к нормали (то есть преломляется «вниз»).

    Этот же оптический эффект приводит к ошибкам в визуальном определении глубины водоёма, которая всегда кажется меньше, чем есть на самом деле.

    В заключении урока отметим, что в настоящее время существуют материалы с отрицательным показателем преломления. Их называют метаматериалами. Гипотезу об их существовании высказал в 1967 году советский физик Виктор Григорьевич Веселаго. А существование подобных материалов было доказано в 2000 году англичанином Джоном Пендри и американцем Дэвидом Смитом.

    Метаматериал представляет собой композиционный материал, свойства которого обусловлены не столько свойствами составляющих его элементов, сколько искусственно созданной периодической структурой. Они представляют собой искусственно сформированные и особым образом структурированные среды, обладающие электромагнитными или акустическими свойствами, сложнодостижимыми технологически, либо не встречающимися в природе.

    3.2. Законы отражения и преломления света

    Корпускулярная теория очень просто объясняла явления геометрической оптики, описываемые в терминах распространения световых лучей. С точки зрения волновой теории, лучи — это нормали к фронту волны. Принцип Гюйгенса также позволяет объяснить законы геометрической оптики на основе волновых представлений о природе света.

    Закон отражения

    Когда световые волны достигают границы раздела двух сред, направление их распространения изменяется. Если они остаются в той же среде, то происходит отражение света.

    Отражение света — это изменение направления световой волны при падении на границу раздела двух сред, в результате чего волна продолжает распространяться в первой среде.

    Закон отражения света хорошо известен:

    Падающий луч, перпендикуляр к границе раздела двух сред в точке падения и отраженный луч лежат в одной плоскости, причем угол падения равен углу отражения.

    Направления распространения падающей и отраженной волн показаны на рис. 3.2.

    Рис. 3.2. Отражение света от плоской поверхности

    Закон отражения может быть выведен из принципа Гюйгенса. Действительно, допустим, что плоская волна, распространяющаяся в изотропной среде, падает на границу раздела двух сред АС (рис. 3.3).

    Рис. 3.3. Применение принципа Гюйгенса к выводу закона отражения

    Достаточно рассмотреть два параллельных луча I и в падающем пучке. Углом падения называют угол между нормалью п к поверхности раздела и падающим лучом I. Плоский фронт AD падающей волны сначала достигнет границы раздела двух сред в точке А, которая станет источником вторичных волн. Согласно принципу Гюйгенса, из нее, как из центра, будет распространяться сферическая волна. Через время

    ,

    то есть с запаздыванием во времени на , луч из падающего пучка придет в точку С, которая в этот момент времени также станет источником вторичной волны. Но, к этому моменту вторичная сферическая волна, распространяющаяся из точки А, уже будет иметь радиус (как и должно быть: ). Мы знаем теперь положение двух точек фронта отраженной волны — С и В. Чтобы не загромождать рисунок, мы не показываем вторичных волн, испущенных точками между А и С, но линия CD будет касательной (огибающей) ко всем из них. Стало быть, действительно является фронтом отраженной волны. Направление ее распространения (лучи II и ) ортогонально фронту CD. Из равенства треугольников ABC и ADC вытекает равенство углов

    что, в свою очередь, приводит к закону отражения

    На рис. 3.4 представлена интерактивная модель отражения света.

    Рис. 3.4. Изучение закона отражения света

    Закон преломления

    Если световые волны достигают границы раздела двух сред и проникают в другую среду, то направление их распространения также изменяется — происходит преломление света.

    Преломление света — это изменение направления распространения световой волны при переходе из одной прозрачной среды в другую.

    Направление распространения падающей и преломленной волны показано на рис. 3.5.

    Рис. 3.5. Преломление света на плоской границе раздела двух прозрачных сред

    Закон преломления гласит:

    Падающий луч, перпендикуляр к границе раздела сред в точке падения и преломленный луч лежат в одной плоскости, причем отношение синуса угла падения к синусу угла преломления постоянно для данной пары сред и равно показателю преломления второй среды относительно первой

    Здесь показатель преломления среды, в которой распространяется преломленная волна, показатель преломления среды, в которой распространяется падающая волна.

    Закон отражения также вытекает из принципа Гюйгенса. Рассмотрим (рис. 3.6) плоскую волну (фронт АВ), которая распространяется в среде с показателем преломления , вдоль направления I со скоростью

    Эта волна падает на границу раздела со средой, в которой показатель преломления равен , а скорость распространения

    Рис. 3.6. К выводу закона преломления света с помощью принципа Гюйгенса

    Время, затрачиваемое падающей волной для прохождения пути ВС, равно

    За это же время фронт вторичной волны, возбуждаемой в точке А во второй среде, достигнет точек полусферы с радиусом

    В соответствии с принципом Гюйгенса положение фронта преломленной волны в этот момент времени задается плоскостью DC, а направление ее распространения — лучом III, перпендикулярным к DC. Из треугольников и следует

    Таким образом, закон преломления света записывается так:

    На рис. 3.7 представлена интерактивная модель преломления света на границе раздела двух сред.

    Рис. 3.7. Изучение закона преломления

    Для еще одной иллюстрации применения принципа Гюйгенса рассмотрим пример.

    Пример. На плоскую границу раздела двух сред падает нормально луч света. Показатель преломления среды непрерывно увеличивается от ее левого края к правому (рис. 3.8). Определим, как будет идти луч света в этой неоднородной среде.

    Рис. 3.8. Искривление луча света в неоднородной среде

    Пусть фронт волны АА подошел к границе раздела сред. Точки раздела сред можно рассматривать как центры вторичных волн. Через время испущенные вторичные сферические волны достигают точек на расстоянии от фронта АА. Поскольку показатель преломления среды растет слева направо, эти расстояния убывают слева направо. Огибающая к вторичным волнам — новый фронт ВВ — повернется. Если теперь взять точки фронта ВВ за источники вторичных волн, то за время они породят волны, образующие фронт СС. Он еще более повернут. Его точки порождают фронт DD и т. д. Проводя нормаль к волновым фронтам в разные моменты времени, получаем путь светового луча в среде с переменным показателем преломления (зеленая линия). Видно, что луч искривляется в сторону увеличения показателя преломления. Аналогия: если притормозить левые колеса автомобиля, его повернет налево. Для света степень «торможения» растет с ростом показателя преломления среды: .

    Эта задача имеет отношение к явлению, наблюдающемуся на море. Когда ветер дует с берега, иногда возникает так называемая «зона молчания»: звук колокола с судна не достигает берега. Обычно говорят, что звук относится ветром. Но даже при сильном урагане скорость ветра примерно в 10 раз меньше скорости звука, так что «отнести» звук ветер никак не может. Объяснение заключается в том, что скорость встречного ветра у поверхности моря вследствие трения меньше, чем на высоте. Поэтому скорость звука у поверхности больше, и линия распространения звука загибается кверху, не попадая на берег.

    Дополнительная информация

    http://www.nvtc.ee/e-oppe/Sidorova/objects/index.html – Законы преломления, отражения света. Зеркала. Теория и примеры задач. В «Итоговых заданиях» — кроссворд.

    http://publ.lib.ru/ARCHIVES/B/. – Тарасов Л.В., Тарасова А.Н., «Беседы о преломлении света».

    Принцип Ферма.

    Итак, волновая оптика способна объяснить явления отражения и преломления света столь же успешно, как и геометрическая оптика. В основу последней, трактующей явления на основе законов распространения лучей, положен принцип Ферма:

    Свет распространяется по такому пути, для прохождения которого требуется минимальное время.

    Для прохождения участка пути свету требуется время

    где v=с/п – скорость света в среде. Таким образом, время t, затрачиваемое светом на путь от точки 1 до точки 2, равно

    Введем величину с размерностью длины, которая называется оптической длиной пути:

    Пропорциональность t и L позволяет сформулировать принцип Ферма следующим образом:

    Свет распространяется по такому пути, оптическая длина которого минимальна.

    Рассмотрим путь света из точки S в точку С после отражения от плоскости АВ (рис. 3.9).

    Рис. 3.9. Применение принципа Ферма к отражению света

    Непосредственное попадание света из S в С невозможно из-за экрана. Нам надо найти точку О, отразившись в которой луч попадет в точку С. Среда, в которой проходит луч, однородна. Поэтому минимальность оптической длины пути сводится к минимальности его геометрической длины. Рассмотрим зеркальное изображение S’ точки S. Геометрические длины путей SOC и S’OC равны. Поэтому минимальность длины SOC эквивалентна минимальности длины S’OC. А минимальная геометрическая длина пути из S’ в С будет соответствовать прямой, соединяющей точки S’ и С. Пересечение этой прямой с плоскостью раздела сред дает положение точки О. Отсюда следует равенство углов:

    то есть закон отражения света.

    Рассмотрим теперь явление преломления света (рис. 3.10).

    Рис. 3.10. Применение принципа Ферма к преломлению света

    Определим положение точки О, в которой должен преломиться луч, распространяясь от S к С, чтобы оптическая длина пути L была минимальна. Выражение для L имеет вид

    Найдем величину х, соответствующую экстремуму оптической длины пути:

    Закон преломления света – формулировка и физический смысл

    Принцип Гюйгенса :

    Каждая точка, до которой доходит световое возбуждение, является, в свою очередь, центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

    Закон отражения :

    • отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения;
    • угол падения α равен углу отражения γ:

    α = γ

    Вывод на основе принципа Гюйгенса:

    Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела двух сред. Когда фронт волны АВ достигнет отражающей поверхности в точке А, эта точка начнет излучать вторичную волну.

    Для прохождения волной расстояния ВС требуется время Δt = BC/υ. За это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен: υΔt = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление распространения этой волны – лучом II. Из равенства треугольников ABC и ADC вытекает закон отражения: угол падения α равен углу отражения γ.

    Закон преломления (закон Снелиуса) :

    • луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости;
    • отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред.

    Вывод закона преломления. Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела со средой, в которой скорость ее распространения равна v.

    Пусть время, затрачиваемое волной для прохождения пути ВС, равно Δt. Тогда ВС = сΔt. За это же время фронт волны, возбуждаемой точкой А в среде со скоростью u, достигнет точек полусферы, радиус которой AD = t. Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление ее распространения – лучом III. Из рис. видно, что

    , т.е. .

    Отсюда следует закон Снелиуса:

    П ринцип Ферма : свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время.

    Покажем применение этого принципа к решению той же задачи о преломлении света.

    Луч от источника света S, расположенного в вакууме идет до точки В, расположенной в некоторой среде за границей раздела

    В каждой среде кратчайшим путем будут прямые SA и AB. Точку A охарактеризуем расстоянием x от перпендикуляра, опущенного из источника на границу раздела. Определим время, затраченное на прохождение пути SAB:

    .

    Для нахождения минимума найдем первую производную от τ по х и приравняем ее к нулю:

    ,

    отсюда приходим к тому же выражению, что получено исходя из принципа Гюйгенса: .

    Следствия из принципа Ферма:

    1. Обратимость световых лучей: если обратить луч III, заставив его падать на границу раздела под углом β, то преломленный луч в первой среде будет распространяться под углом α, т. е. пойдет в обратном направлении вдоль луча I.

    2. Если свет распространяется из среды с большим показателем преломления n1 (оптически более плотной) в среду с меньшим показателем преломления n2 (оптически менее плотной) ( n1 > n2 ), например из стекла в воздух, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления β больше, чем угол падения α:

    3. С увеличением угла падения увеличивается угол преломления, до тех пор, пока при некотором угле падения (α = αпр) угол преломления не окажется равным π/2.

    Полное отражение

    Угол αпр называется предельным углом полного отражения . При углах падения α > αпр весь падающий свет полностью отражается.

    По мере приближения угла падения к предельному, интенсивность преломленного луча уменьшается, а отраженного – растет.

    Если α = αпр , то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего.

    Таким образом, при углах падения в пределах от αпр до π/2, луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением .

    В случае, если вторая среда – воздух

    Преломление света в плоскопараллельной пластине

    Плоскопараллельная пластина — это оптический прибор, представляющий собой ограниченный параллельными поверхностями слой однородной среды, прозрачной в некотором интервале длин волн λ оптического излучения.

    Основным оптическим свойством пластины является то, что луч, падающий на пластину, в результате двукратного преломления на поверхностях пластины параллельно смещается на некоторую величину δL относительно исходного луча

    Величина смещения в плоскопараллельной пластине

    Величина сдвига луча света δL зависит:

    • от угла падения света α ,
    • от толщины пластины d ,
    • от показателя преломления вещества, из которого изготовлена плоскопараллельная пластина n .

    C увеличением любого из этих параметров смещение луча света увеличивается.

    Смещение луча можно выразить через угол падения

    Из этого выражения видно, что величина смещения луча в пластине зависит от угла падения, толщины пластины и показателя преломления. Из формулы видно, что отклонения луча не происходит, если:

    1. угол падения равен нулю: α = 0 ,
    2. относительный показатель преломления равен единице (преломления не происходит): n = 1 ,
    3. толщина пластины равна нулю: d = 0

    Ход луча через треугольную призму

    Призма — оптический элемент из прозрачного материала (например, оптического стекла) в форме геометрического тела — призмы, имеющий плоские полированные грани, через которые входит и выходит свет. Свет в призме преломляется. Важнейшей характеристикой призмы является показатель преломления материала, из которого она изготовлена.

    На призму из точки S падает луч света. Испытав 2 преломления, он выходит с отклонением на угол δ, который называется угол отклонения луча. Угол при вершине призмы АВС – φ называется преломляющим углом.

    Если световой луч падает на преломляющую грань призмы под произвольным углом , то угол отклонения луча призмой определяется формулой

    Если световой луч падает на преломляющую грань призмы под малым углом (практически перпендикулярно преломляющей грани призмы), то угол отклонения луча призмой определяется формулой

    Если призма сделана из материала, показатель преломления которого больше, чем у среды, в которой находится призма, отклонение лучей происходит к основанию призмы.

    Лучи различного цвета (различной частоты или длины волны) отклоняются призмой по-разному. В случае нормальной дисперсии (показатель преломления материала тем выше, чем больше частота светового излучения) призма наиболее сильно отклоняет фиолетовые лучи; наименее — красные.

    Формула закона преломления света — общие и частные случаи

    Закон преломления света используется в разных сферах и позволяет определить, как будут вести себя лучи при попадании из одной среды в другую. Понять особенности этого явления, причины его возникновения и другие важные нюансы несложно. Также стоит разобраться в видах преломления, так как это имеет большое значение при вычислении и практическом использовании принципов закона.

    В чем заключается явление преломления света

    С этим феноменом знакомы практически все, так как он широко встречается в повседневной жизни. Например, если смотреть на дно водоема с прозрачной водой, то оно всегда кажется ближе, чем есть на самом деле. Искажение можно наблюдать в аквариумах, этот вариант знаком практически всем. Но чтобы разобраться в вопросе, надо рассмотреть несколько важных аспектов.

    Причины преломления

    Тут решающее значение имеют характеристики разных сред, через которые проходит световой поток. Их плотность чаще всего различается, поэтому свет распространяется с разной скоростью. Это напрямую влияет и на его свойства.

    При переходе из одной среды в другую (в месте их соединения), свет меняет свое направление из-за различий в плотности и других особенностей. Отклонение может быть разным, чем больше разница в характеристиках сред, тем большее искажение образуется в конечном итоге.

    Кстати! При преломлении света его часть всегда отражается.

    Примеры из жизни

    Встретить примеры рассматриваемого явления можно практически везде, поэтому каждый может увидеть, как влияет преломление на восприятие предметов. Самые характерные варианты таковы:

    1. Если поместить ложку или трубочку в стакан с водой, то можно увидеть, как зрительно предмет перестает быть прямым и отклоняется, начиная от границы двух сред. Эта оптическая иллюзия используется в качестве примера чаще всего.
    2. В жаркую погоду на асфальте часто возникает эффект лужи. Это объясняется тем, что в месте резкого перепада температур (у самой земли) лучи преломляются так, что глаза видят небольшое отражение неба.
    3. Миражи также появляются в результате преломления. Тут все на порядок сложнее, но при этом данное явление встречается не только в пустыне, но и в горах и даже в средней полосе. Еще один вариант – когда видны объекты, находящиеся за линией горизонта.

    Что такое угол преломления

    Углом преломления называют угол, который образуется вследствие явления преломления на границе соединения двух прозрачных сред с разными свойствами светопроницаемости. Он определяется от перпендикулярной линии, проведенной к преломляемой плоскости.

    Это явление обусловлено двумя законами – сохранения энергии и сохранения импульса. С изменением свойств среды скорость волны неизбежно меняется, но при этом ее частота остается одинаковой.

    От чего зависит угол преломления

    Показатель может меняться и в первую очередь зависит от характеристики двух сред, через которые проходит свет. Чем больше разница между ними, тем значимее зрительное отклонение.

    Также угол зависит от длины излучаемых волн. С изменением этого показателя меняется и отклонение. В некоторых средах большое влияние оказывает и частота электромагнитных волн, но этот вариант встречается далеко не всегда.

    В оптически анизотропных веществах влияние на угол оказывают поляризация света и его направление.

    Виды преломления

    Чаще всего встречается обычное преломление света, когда из-за разных характеристик сред в той или иной мере можно наблюдать эффект искажения. Но есть и другие разновидности, которые проявляются параллельно или могут рассматриваться в качестве отдельного явления.

    Когда вертикально поляризованная волна попадает на границу двух сред под определенным углом (его называют угол Брюстера), можно увидеть полное преломление. При этом отраженной волны не будет вообще.

    Полное внутреннее отражение можно наблюдать только тогда, когда излучение переходит из среды с более высоким показателем преломления в менее плотную среду. При этом получается, что угол преломления больше, чем угол падения. То есть, наблюдается обратная зависимость. Причем, с увеличением угла, по достижении определенных его значений показатель становится равным 90 градусам.

    Если увеличивать значение еще больше, то луч будет отражаться от границы двух веществ без перехода в другую среду. Именно этот феномен и называют полным внутренним отражением.

    Тут нужно пояснение, касающееся вычисления показателей, так как формула отличается от стандартной. В этом случае она будет выглядеть так:

    Этот феномен позволил создать оптоволокно – материал, который может передавать огромные объемы информации на неограниченное расстояние со скоростью, недоступной для других вариантов. В отличие от зеркала в этом случае отражение происходит без потери энергии даже при многократном отражении.

    Оптическое волокно имеет простую структуру:

    1. Светопередающая сердцевина изготавливается из пластика либо стекла. Чем большее ее сечение, тем большие объемы информации можно передавать.
    2. Оболочка необходима для отражения светового потока в сердцевине так, чтобы он распространялся только по ней. Важно, чтобы в месте входа в световод луч падал под углом больше предельного, тогда он будет отражаться без потери энергии.
    3. Защитная изоляция предотвращает повреждение оптоволокна и защищает его от неблагоприятных воздействий. За счет этой части кабель можно прокладывать и под землей.

    Как был открыт закон преломления

    Это открытие было сделано Виллебрордом Снеллиусом, голландским математиком, в 1621 году. После проведения ряда опытов он смог сформулировать основные аспекты, которые остались практически неизменными по сей день. Именно он первым отметил постоянство соотношения синусов углов падения и отражения.

    Первую публикацию с материалами открытия сделал французский ученый Рене Декарт. При этом эксперты расходятся во мнении, кто-то считает, что он воспользовался материалами Снеллиуса, а кто-то уверен, что он независимо переоткрыл его.

    Определение и формула коэффициента преломления

    Падающий и преломленный лучи, а также перпендикуляр, проходящий через место соединения двух сред, находятся в пределах одной плоскости. Синус угла падения по отношению к синусу угла преломления является постоянной величиной. Именно так звучит определение, которое может отличаться по изложению, но смысл всегда остается одинаковым. Графическое объяснение и формула представлены на картинке ниже.

    Стоит отметить, что показатели преломления не имеют никаких единиц измерения. В свое время при изучении физических основ рассматриваемого явления сразу двое ученых – Христиан Гюйгенс из Голландии и Пьер Ферма из Франции сделали один и тот же вывод. Согласно ему, синус падения и синус преломления равняются отношению скоростей в средах, через которые проходят волны. Если через одну среду свет проходит быстрее, чем через другую, то она оптически менее плотная.

    Кстати! Скорость света в вакууме выше, чем в любом другом веществе.

    Физический смысл «Закона Снеллиуса»

    Когда свет переходит из вакуума в любое другое вещество, он неизбежно взаимодействует с его молекулами. Чем выше оптическая плотность среды, тем сильнее взаимодействует свет с атомами и тем ниже скорость его распространения, при этом с ростом плотности растет и показатель преломления.

    Абсолютное преломление обозначается буквой n и позволяет понять, как меняется скорость света при переходе из вакуума в какую-либо среду.

    Относительное преломление (n21) показывает параметры изменения скорости света при переходе из одной среды в другую.

    В видео очень просто с помощью графики и анимации объясняется закон из физики 8 класса.

    Область применения закона в технике

    После открытия явления и проведения практических исследований прошло много времени. Результаты помогли разработать и реализовать большое количество приборов, используемых в разных отраслях, стоит разобрать самые распространенные примеры:

    1. Офтальмологическое оборудование. Позволяет проводить разнообразные исследования и выявлять патологии.
    2. Аппараты для исследования желудка и внутренних органов. Можно получать четкое изображение без введения камеры, что существенно упрощает и ускоряет процесс.
    3. Телескопы и другое астрономическое оборудование благодаря преломлению позволяют получать изображения, которые не видны невооруженным глазом.

    Видео-урок: Вывод по закону преломления света.

    Преломление света – явление, которое обусловлено характеристиками разных сред. Его можно наблюдать в месте их соединения, угол отклонения зависит от разницы между веществами. Эту особенность широко используют в современной науке и технике.

    Ссылка на основную публикацию