Использование энергии солнца на Земле – способы и преимущества

Принцип преобразования солнечной энергии, её применение и перспективы

В мире всё меньше традиционных источников энергии. Запасы нефти, газа, угля истощаются и всё идёт к тому, что рано или поздно они закончатся. Если к этому времени не найти альтернативных источников энергии, то человечество ждёт катастрофа. Поэтому во всех развитых странах ведутся исследования по открытию и разработке новых источников энергии. В первую очередь – это солнечная энергия. С древних времён эта энергию использовалась людьми для освещения жилища, сушки продуктов, одежды и т. п. Солнечная энергетика сегодня является одним из наиболее перспективных источников альтернативной энергии. В настоящее время уже есть достаточно много конструкций, позволяющих преобразовывать энергию солнца в электрическую или тепловую. Отрасль постепенно растёт и развивается, но, как и везде, есть свои проблемы. Обо всём этом речь пойдёт в настоящем материале.

Солнце как альтернативный источник энергии

Энергия солнца является одним из самых доступных возобновляемых источников на Земле. Использование солнечной энергии в народном хозяйстве положительно сказывается на состоянии окружающей среды, поскольку для её получения не требуется бурить скважины или разрабатывать шахты. К тому же, этот вид энергии свободный и не стоит ничего. Естественно, что требуются затраты на покупку и монтаж оборудования.

Проблема в том, что солнце – это прерывистый источник энергии. Так, что требуется накопление энергии и использование её в связке с другими энергетическими источниками. Основная проблема на сегодняшний день заключается в том, что современное оборудование имеет низкую эффективность преобразования энергии солнца в электрическую и тепловую. Поэтому все разработки направлены на то, чтобы увеличить КПД таких систем и снизить их стоимость.

Вот он – возобновляемый источник энергии

Солнце отправляет к поверхности нашей планеты радиацию. Из широкого спектра излучения поверхности Земли достигают 3 типа волн:

  • Световые. В спектре излучения их примерно 49 процентов;
  • Инфракрасные. Их доля также 49 процентов. Благодаря этим волнам наша планета нагревается;
  • Ультрафиолетовые. В спектре солнечного излучения их примерно 2 процента. Они невидимы для нашего глаза.

Экскурс в историю

Как развивалась солнечная энергетика до наших дней? Об использовании солнца в своей деятельности человек думал с древних времён. Всем известна легенда, согласно которой Архимед сжёг флот неприятеля у своего города Сиракузы. Он использовал для этого зажигательные зеркала. Несколько тысяч лет назад на Ближнем востоке дворцы правителей отапливали водой, которая нагревалась солнцем. В некоторых странах выпариваем морской воды на солнце получали соль. Учёные часто проводили опыты с нагревательными аппаратами, работающими от солнечной энергии.

Первые модели таких нагревателей были выпущены в XVII─XVII веках. В частности, исследователь Н. Соссюр представил свою версию водонагревателя. Он представляет собой ящик из дерева, накрытый стеклянной крышкой. Вода в этом устройстве подогревалась до 88 градусов Цельсия. В 1774 году А. Лавуазье использовал линзы для концентрации тепла от солнца. И также появились линзы, позволяющие локально расплавить чугун за несколько секунд.

Батареи, преобразующие энергию солнца в механическую, создали французские учёные. В конце XIX века исследователь О. Мушо разработал инсолятор, фокусирующий лучи с помощью линзы на паровом котле. Этот котёл использовался для работы печатной машины. В США в то время удалось создать агрегат, работающий от солнца, мощностью в 15 «лошадей».

Инсолятор О. Мушо

В тридцатые годы прошлого столетия академик СССР А. Ф. Иоффе предложил использовать полупроводниковые фотоэлементы для преобразования энергии солнца. КПД батарей в то время был менее 1%. Прошло много лет до того, как были разработаны фотоэлементы, имеющие КПД на уровне 10─15 процентов. Затем американцы построили солнечные батареи современного типа.

Для получения большей мощности солнечных систем низкий КПД компенсируется увеличенной площадью фотоэлементов. Но это не выход, поскольку кремниевые полупроводники в фотоэлементах довольно дорогие. При увеличении КПД возрастает стоимость материалов. Это является главным препятствием для массового использования солнечных батарей. Но по мере истощения ресурсов их использование будет всё более выгодным. Кроме того, исследования по увеличению КПД фотоэлементов не прекращаются.

Фотоэлемент для солнечной батареи

Преобразование солнечной энергии

Прежде всего, стоит сказать о том, в чём можно выразить и оценить солнечную энергию.

Как можно оценить величину солнечной энергии?

Специалисты используют для оценки такую величину, как солнечная постоянная. Она равна 1367 ватт. Именно столько энергии солнца приходится на квадратный метр планеты. В атмосфере теряется примерно четверть. Максимальное значение на экваторе – 1020 ватт на квадратный метр. С учётом дня и ночи, изменения угла падения лучей, эту величину следует уменьшить ещё в три раза.

Распределение солнечного излучения на карте планеты

Способы преобразования

Поскольку наука на сегодняшний день не имеет устройств, работающих на энергии солнца в чистом виде, её требуется преобразовать в другой тип. Для этого были созданы такие устройства, как солнечные батареи и коллектор. Батареи преобразуют солнечную энергию в электрическую. А коллектор вырабатывает тепловую энергию. Есть также модели, совмещающие эти два вида. Они называются гибридными.

Гибридная солнечная панель

  • фотоэлектрический;
  • гелиотермальный;
  • термовоздушный;
  • солнечные аэростатные электростанции.

Кроме фотоэлементов, для получения электрической энергии применяются тонкопленочные или гибкие солнечные панели. Их преимуществом является малая толщина, а недостатком – сниженный КПД. Такие модели часто используются в портативных зарядках для различных гаджетов.

Гибкая солнечная панель

Гелиотремальная энергетика основана на нагреве поверхности энергоносителя в специальном коллекторе. Например, это может быть нагрев воды для системы отопления дома. В качестве теплоносителя может использоваться не только вода, но и воздух. Он может нагреваться в коллекторе и подаваться в систему вентиляции дома.

Все эти системы стоят достаточно дорого, но их освоение и совершенствование постепенно продолжается.
Вернуться к содержанию

Преимущества и недостатки солнечной энергии

Преимущества

  • Бесплатно. Одно из главных преимуществ энергии солнца – это отсутствие платы за неё. Солнечные панели делаются с использованием кремния, запасов которого достаточно много;
  • Нет побочного действия. Процесс преобразования энергии происходит без шума, вредных выбросов и отходов, воздействия на окружающую среду. Этого нельзя сказать о тепловой, гидро и атомной энергетике. Все традиционные источники в той или иной мере наносят вред ОС;
  • Безопасность и надёжность. Оборудование долговечное (служит до 30 лет). После 20─25 лет использования фотоэлементы выдают до 80 процентов от своего номинала;
  • Рециркуляция. Солнечные панели полностью перерабатываются и могут быть снова использованы в производстве;
  • Простота обслуживания. Оборудование довольно просто разворачивается и работает в автономном режиме;
  • Хорошо адаптированы для использования в частных домах;
  • Эстетика. Можно установить на крыше или фасаде здания не в ущерб внешнему виду;
  • Хорошо интегрируются в качестве вспомогательных систем энергоснабжения.

Недостатки

  • Эффективность зависит от времени суток и погоды. Нерентабельно использовать в высоких широтах;
  • Требуется аккумулировать преобразованную энергию;
  • Первоначальные вложения высокие. Особенно это ощутимо для обычных людей при покупке оборудования для частного дома;
  • Периодически нужно делать очистку панелей от загрязнения;
  • Для размещения требуется большая площадь;
  • Некоторые фотоэлементы имеют в своём составе Pb, Cd, мышьяк, что усложняет и переработку.

Сферы применения солнечной энергии

Направлений использования довольно много. Ниже рассматриваются самые востребованные и распространённые.

Энергоснабжение частного дома

Совсем недавно такие системы были чем-то из фантастических фильмов. Но сейчас у многие можно встретить комплекты солнечных модулей на крыше или фасаде дома. КПД таких систем пока не превышает 10─15 процентов. Напряжение 12 или 24 вольта. Но для частного дома или дачи этого вполне достаточно.

Здесь стоит сказать, что современные панели вырабатывают электричество даже в сумерках и пасмурную погоду. Заряда аккумуляторных батарей хватает на тёмное время суток. Кроме того, солнечные панели подключаются как вспомогательные, и при необходимости их подменяет основная энергетическая система.
Вернуться к содержанию

Солнечный коллектор для отопления и горячего водоснабжения

Здесь энергия солнца преобразуется в тепловую. Наверное, у многих на дачном участке есть душ с металлическим баком наверху. Он нагревается от солнца и можно мытья нагретой водой. Это простейший вариант такого коллектора.

Но современные системы работают значительно эффективнее. В них есть поглощающий элемент, который передаёт тепловую энергию теплоносителю. Есть варианты с водой и воздухом в качестве теплоносителя.

Компактные системы с коллектором могут обеспечить бесплатный нагрев воды в доме для семьи на 3─5 человек. Речь идёт об осенне-зимнем периоде. Зимой эффективность подобных систем значительно снижается. Параллельно с установкой таких систем проводятся работы по улучшению изоляции. Если зимы в вашем регионе не суровые, то коллектор вполне может использоваться и зимой.
Вернуться к содержанию

Портативные источники энергии

Этот вид устройств предназначен для получения электрической энергии при отсутствии электрических сетей. Такие переносные аккумуляторы с возможностью зарядки от солнечной панели популярны среди туристов, дачников и т. п. Об этих устройствах можно прочитать в статьях:

Концентраторы

Этот вид устройств можно назвать экзотикой. Их можно встретить у туристов в составе походных кухонь. Они концентрируют свет параболическим зеркалом на ёмкости с теплоносителем.
Вернуться к содержанию

Транспорт

Это пока также экзотическая сфера применения. Но уже сейчас проводятся гоночные соревнования в Австралии на солнечных карах. Однако в последнее время конструкторам удалось нарастить скорость таких транспортных средств до 80 км/час. И также проводятся испытания самолёта на солнечных батареях с облётом планеты.
Вернуться к содержанию

Развитие солнечной энергетики в разных странах и её перспективы

Альтернативные виды энергетики, к которым относится солнечная, быстрее всего развивается в технологически развитых странах. Это США, Испания, Саудовская Аравия, Израиль и другие страны, где большое количество солнечных дней в году. Солнечная энергетика также развивается в России и странах СНГ. Правда, темпы у нас значительно медленнее из-за климатических условий и меньших доходов населения.

На территории бывшего СССР климат для солнечных установок больше всего подходит климат на Украине и республиках Средней Азии. Однако здесь пока больше разговоров о развитии, чем реальных дел. То есть, раскрыть потенциал использования солнечной энергии здесь пока не удалось. Если говорить о доле солнечной энергии на рынке России и стран СНГ, то она не превышает 1 процента. В планах значится строительство нескольких солнечных электростанций. Поэтому ситуация ещё может исправиться.

В России наблюдается постепенное развитие и уклон делается на развитие солнечной энергетики в регионах Дальнего Востока. Солнечные электростанции строятся в удалённых населённых пунктах Якутии. Это позволяет экономить на завозимом топливе. Строятся электростанции и в южной части страны. Например, в Липецкой области.

Все эти данные позволяют сделать вывод о том, что многие страны мира пытаются максимально внедрить у себя использование солнечной энергии. Это актуально потому, что энергопотребление постоянно растёт, а ресурсы ограничены. К тому же, традиционная сфера энергетики сильно загрязняет окружающую среду. Поэтому альтернативная энергетика – это будущее. И энергия солнца является одним из ключевых её направлений.
Вернуться к содержанию

Солнечная энергия

Пост опубликован: 28 апреля, 2017

Что такое солнечная энергия

Солнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.

Солнечная энергия — это источник жизни на планете Земля. Наша планета, и все живые организмы, существующие на ней, получает энергию солнца в виде солнечного света и тепла.

Солнечная энергия является источником возобновляемой и экологически чистой энергии.

Солнечная энергия как альтернативный источник энергии

Способы преобразования энергии солнца для получения различных видов энергии, используемой человеком, можно разделить по видам получаемой энергии и способам ее получения, это:

Преобразование в электрическую энергию

Путем применения фотоэлектрических элементов

Фотоэлектрические элементы используются для изготовления солнечных панелей, которые служат приемниками солнечной энергии в системах солнечных электрических станций. Принцип работы основан на получении разности потенциалов внутри фотоэлемента при попадании на него солнечного света.

Панели различаются по структуре (поликристаллические, монокристаллические, с напылением кремния), габаритным размерам и мощности.

Путем применения термоэлектрических генераторов.

  • Термоэлектрический генератор – это техническое устройство, позволяющее получать электрическую энергию из тепловой энергии. Принцип действия основан на преобразовании энергии получаемой из-за разности температур на разных частях элементов конструкции (термоэлектродвижущая сила).

Преобразование в тепловую энергию

Путем использования коллекторов различных типов и конструкций.

  • Вакуумные коллекторы — трубчатого вида и в виде плоских коллекторов.

Принцип действия — под воздействием солнечных лучей, нагревается специальная жидкость, которая при достижении определённых параметров, начинает испаряться, после чего пар передает свою энергию теплоносителю. Отдав тепловую энергию пар конденсируется и процесс повторяется.

  • Плоские коллекторы – представляют из себя каркас с теплоизоляцией и абсорбер покрытые стеклом, с патрубками для входа и выхода теплоносителя.

Принцип действия — потоки солнечного света попадают на абсорбер и нагревают его, тепло с абсорбера переходит теплоносителю.
Путем использования гелиотермальных установок.
Принцип действия основан на нагревании поверхности способной поглощать солнечные лучи. Солнечные лучи фокусируются и посредством устройства линз концентрируются, после чего направляются на принимающее устройство, где энергия солнца передается для накопления или передачи потребителю посредством теплоносителя.

Распространение в России

Солнечная энергетика получает все более широкое распространение в разных странах и на разных континентах. Россия не является исключением из этой тенденции. Причиной более широкого распространения в последние годы стало:

  • Развитие новых технологий, позволившее снизить стоимость оборудования;
  • Желание людей иметь независимый источник энергии;
  • Чистота производства получаемой энергии («зеленая энергетика»);
  • Возобновляемый источник энергии.

Потенциалом для развития солнечной энергетики обладают южные районы нашей страны – республики Кавказа, Краснодарский и Ставропольский край, южные районы Сибири и Дальнего Востока.
Районы различаются по инсоляции в течение суток и времени года, так для разных регионов поток солнечной радиации, в летний период, составляет:

По состоянию на начало 2017 года мощность работающих солнечных электростанций на территории России составляет 0,03% от мощности электростанции энергетической системы нашей страны. В цифрах – это составляет 75,2 МВт.

Солнечные электростанции работают в

  • Оренбургской области:
    «Сакмарская им. А. А. Влазнева», установленной мощностью 25 МВт;
    «Переволоцкая», установленной мощностью 5,0 МВт.
  • Республике Башкортостан:
    «Бурибаевская», установленной мощностью 20,0 МВт;
    «Бугульчанская», установленной мощностью 15,0 МВт.
  • Республике Алтай:
    «Кош-Агачская», установленной мощностью 10,0 МВт;
    «Усть-Канская», установленной мощностью 5,0 МВт.
  • Республике Хакасия:
    «Абаканская», установленной мощностью 5,2 МВт.
  • Белгородской области:
    «АльтЭнерго», установленной мощностью 0,1 МВт.
  • В Республике Крым, независимо от Единой энергетической системы страны, работает 13 солнечных электрических станций, общей мощностью 289,5 МВт.
  • Также, вне системы работает станция в Республике Саха—Якутия (1,0 МВт) и в Забайкальском крае (0,12 МВт).

В стадии разработки проекта и строительства находятся электростанции

  • В Алтайском крае, 2 станции, общей проектируемой мощностью 20,0 МВт, запуск в работу планируется в 2019 году.
  • В Астраханской области, 6 станций, общей проектируемой мощностью 90,0 МВт, запуск в работу планируется в 2017 году.
  • В Волгоградской области, 6 станций, общей проектируемой мощностью 100,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Забайкальском крае, 3 станции, общей проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Иркутской области, 1 станция, проектируемой мощностью 15,0 МВт, запуск в работу планируется в 2018 году.
  • В Липецкой области, 3 станции, общей проектируемой мощностью 45,0 МВт, запуск в работу планируется в 2017 году.
  • В Омской области, 2 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Оренбургской области, 7 станция, проектированной мощностью 260,0 МВт, запуск в работу планируется в 2017-2019 годах.
  • В Республике Башкортостан, 3 станции, проектируемой мощностью 29,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Бурятия, 5 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Дагестан, 2 станции, проектируемой мощностью 10,0 МВт, запуск в работу планируется в 2017 году.
  • В Республике Калмыкия, 4 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Самарской области, 1 станция, проектируемой мощностью 75,0 МВт, запуск в работу планируется в 2018 году.
  • В Саратовской области, 3 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Ставропольском крае, 4 станции, проектируемой мощностью 115,0 МВт, запуск в работу планируется в 2017-2019 годы.
  • В Челябинской области, 4 станции, проектируемой мощностью 60,0 МВт, запуск в работу планируется в 2017 и 2018 году.

Общая проектируемая мощность солнечных электрических станций, находящихся в стадии разработки и строительства, составляет – 1079,0 МВт.
Термоэлектрические генераторы, гелиоколлекторы и гелиотермальные установки также широко применяются на промышленных предприятиях и в повседневной жизни. Вариант и способ использования выбирает каждый для себя сам.

Количество технических устройств, использующих энергию солнца для выработки электрической и тепловой энергий, а также количество строящихся солнечных электрических станций, их мощность, говорят сами за себя — в России альтернативным источникам энергии быть и развиваться.

Пригодна ли для обычного дома

  • Для бытового использования гелиоэнергетика — перспективный вид энергетики.
  • В качестве источника электрической энергии, для жилых домов, используют солнечные электрические станции, которые выпускают промышленные предприятия в России и за ее пределами. Установки выпускаются различной мощности и комплектации.
  • Использование теплового насоса — обеспечит жилой дом горячей водой, подогреет воду в бассейне, нагреет теплоноситель в системе отопления или воздух внутри помещений.
  • Гелиоколлекторы — можно использовать в системах отопления домов и горячего водоснабжения. Более эффективны, в этом случае, вакуумные трубчатые коллекторы.

Плюсы и минусы

К достоинствам солнечной энергетики относятся:

  • Экологическая безопасность установок;
  • Неисчерпаемость источника энергии в далекой перспективе;
  • Низкая себестоимость получаемой энергии;
  • Доступность производства энергии;
  • Хорошие перспективы развития отрасли, обусловленные развитием технологий и производством новых материалов с улучшенными характеристиками.

Недостатками являются:

  • Прямая зависимость количества вырабатываемой энергии от погодные условия, времени суток и времени года;
  • Сезонность работы, которую определяет географическое расположение;
  • Низкий КПД;
  • Высокая стоимость оборудования.

Перспективы

Перспективы развития данной отрасли энергетики обусловлены положительными и отрицательными свойствами присущим гелиоустановкам. Если с достоинствами все понятно, то с недостатками предстоит работать инженерам и разработчикам оборудования и материалов.

Факторами, вызывающими здоровый оптимизм, по развитию альтернативных источников энергии, являются:

  1. Запасы традиционных источников энергии постоянно сокращаются, что обуславливает рост их стоимости.
  2. Технический прогресс постоянно идет, появляются новые материалы и технологии, и что, в свою очередь, приводит к уменьшению стоимости оборудования и повышению КПД установок.
  3. Политика государства в энергетической области направлена на развитие альтернативной энергетики, о чем были приняты постановления правительства и соответствующие программы, как то:
  • В 2009 году — «Основные направления государственной политики в сфере повышения энергетической эффективностиэлектроэнергетики на основе использования возобновляемых источников энергии на период до 2020 года».
  • Помощь государства при реализации программы Международной финансовой корпорации (IFC) по развитию возобновляемых источников энергии.
  • Создание, на законодательном уровне, экономических рычагов, способствующих развитию «зеленой» энергетики, выражающихся в установлении льготных тарифов, финансовой помощи при строительстве, налоговые льготы и компенсация части кредитных затрат на строительство.

Россия – большая страна, поэтому для успешного развития всех отраслей промышленности и комфортного проживания людей во всех регионах, необходимо наличие запасов различных видов энергии. В связи с этим альтернативные источники все более прочно входят в общую систему энергоснабжения страны, обеспечивая самые отдаленные города и поселки источниками электричества и тепла.

Пример: баллистическое движение

Содержание

  • 1 Уравнение движения
  • 2 Точное решение
  • 3 Случай малого сопротивления
  • 4 См. также

Уравнение движения [ править ]

Рассмотрим движение материальной точки, брошенной под углом к горизонту в поле силы тяжести. Будем считать, что на тело действует сила сопротивления, пропорциональная его скорости. Реальный закон сопротивления сложнее, однако здесь мы ограничимся указанной упрощенной постановкой. Запишем уравнение движения рассматриваемой системы и соответствующие начальные условия:

[math] mddot = m – bdot;qquad left.dotright|_= _0,qquad left.right|_= 0, [/math]

где [math]m[/math] и [math][/math] — масса и радиус-вектор материальной точки, [math]m[/math] — сила тяжести, [math]bvphantom[/math] — коэффициент сопротивления, [math]_0[/math] — начальная скорость, [math]t[/math] — время, точкой обозначена производная по времени, векторы выделены жирным шрифтом.

Обозначим [math]beta = b/m, = dot[/math] . Тогда уравнение движения может быть записано в виде

Точное решение [ править ]

Ищем решение полученного линейного дифференциального уравнения в виде выражения

которое, после подстановки в уравнение движения с учетом начальных условий, дает следующую формулу для скорости

Легко видеть, что при [math]t to infty[/math] скорость стремится к постоянному значению [math]/[/math] , представляющему собой скорость парашютирования. Интегрирование по времени полученного выражения скорости с учетом начальных условий приводит к следующему уравнению для радиус-вектора материальной точки

Баллистическая кривая, соответствующая полученному выше решению, представлена на интерактивном графике ниже. Перемещение слайдера позволяет иследовать влияние угла броска и коэффициента сопротивления на форму траектории (при постоянной скорости броска).

Файл “mgb.js”

Файл “mgb.html”

Случай малого сопротивления [ править ]

Полученное выше решение

дает точную формулу для траектории. Однако не может не вызывать удивление отличие полученной формулы от классической формулы

описывающей движение тела, брошенного под углом к горизонту без учета сопротивления. Чтобы показать связь этих решений, рассмотрим случай малого сопротивления: [math]beta t ll 1[/math] . Используем разложение

[math]e^ <-beta t>approx 1 – beta t + frac12,beta^2 t^2. [/math]

Подстановка данного разложения в формулу точного решения дает

[math] = _0 t + frac12,tilde t^2,qquad tilde = – beta _0. [/math]

Следовательно, движение при малом сопротивлении близко к движению без сопротивления, но с измененной по величине и направлению силой тяжести, а траектория материальной точки приближенно представляет собой наклоненную параболу.

Данный вывод очень нагляден, однако, строго говоря, он справедлив только для очень малых времен. Соответствующую кривую можно увидеть на интерактивном графике выше, если установить флажок, соответствующий квадратичному приближению. Из графиков видно, что приближенное решение дает оценку для точного решения, однако погрешность относительно высока. Из использованного разложения можно было бы ожидать, что приближенное решение будет асимптотически близко к точному при [math]betato0[/math] . Действительно, для справедливости использованного разложения должно выполняться условие [math]beta t ll 1[/math] . То есть решение справедливо для не слишком больших времен. В частности, при броске с большой высоты тело может перейти в режим парашютирования, который не описывается данным приближенным решением.

Однако, на самом деле, ограничение еще более жесткое. Это можно увидеть, если удержать следующее слагаемое в разложении экспоненты:

[math]e^ <-beta t>approx 1 – beta t + frac12,beta^2 t^2 – frac16,beta^3 t^3, [/math]

что приводит к выражению

[math] = _0 t + frac12left( – beta _0right) t^2 – frac16,betat^3. [/math]

Данное выражение отличается наличием последнего слагаемого, которое дает хоть и меньший, но сравнимый вклад. В выражении имеется два слагаемых, линейных по [math]beta[/math] . Хоть они и имеют разный порядок малости по [math]t[/math] , однако для времен порядка [math]v_<0>/g[/math] (такой порядок имеет полное время полета) они, очевидно, дают сравнимый вклад. Соответствующую кривую можно увидеть на интерактивном графике выше, если установить флажок, соответствующий кубическому приближению.

Таким образом, квадратичное приближение имеет асимптотическую точность только при малых временах [math]t ll v_<0>/g[/math] . Однако, как видно из графиков, оно все же неплохо приближает точное решение, как при малых [math]beta[/math] , так и при больших, для которых форма кривой оказывается даже более адекватной, чем для кубического приближения. Следовательно, наглядная интерпретация в виде наклоненной параболы вполне допустима для качественного описания баллистического движения.

Лекция “Баллистическое движение 10 класс
презентация к уроку по физике (10 класс) по теме

лекционный материал по физике в виде презентации 10 класс

Скачать:

ВложениеРазмер
лекция баллистическое движение1.67 МБ
Предварительный просмотр:

Подписи к слайдам:

Лекция 5. Баллистическое движение д/з: § 1.23-1.24, задача №1 из § 1.25 (разобрать)

БАЛЛИСТИЧЕСКОЕ ДВИЖЕНИЕ Ballo (греч.) – бросаю БАЛЛИСТИКА – наука о законах полёта тел (снарядов, мин, бомб, пуль), проходящих часть пути как свободно брошенное тело. Словарь Ожегова:

Галилей в конце Х VI в. изучал опытным путем падение тел, роняя тяжелые тела с башни. Тела, независимо от их массы достигают земли почти в одно и то же время. Свободным падением называется движение тел под действием силы тяжести без учёта сопротивления воздуха.

Но на тела ещё действует сила сопротивления воздуха! Наблюдать идеальное свободное падение можно в трубке Ньютона, если с помощью насоса выкачать из неё воздух.

Все тела, независимо от их массы, падают в вакууме с одинаковым ускорением ! В ы в о д: Пробка, пёрышко, дробинка падают в воздухе (рис.1) и в вакууме (рис.2). Упали одновременно Дробинка упала раньше

камень Ї Ї h g y 0

Формулы, которым подчиняется свободное падение тел. Скорость в любой момент времени.  v v № 0 0 0 Путь, пройденный при свободном падении  gt v   0 gt  2 2 gt h v   2 0 2 gt t h Модуль скорости в конце падения  2 gh v v   2 0 2 gh Время свободного падения  2 g h t 0 v v v

Движение тела, брошенного под углом к горизонту у х a v 0 x v 0 y v 0 v v y = 0 l h g По горизонтали: т.е. вдоль оси ОХ тело движется равномерно (т.к. нет ускорения) с постоянной скоростью, равной проекции начальной скорости на ось ОХ Т.о. при рассмотрении движения вдоль оси ОХ нужно пользоваться формулами, полученными для равномерного движения l=v x t= v 0 cosa t x= x 0 + v 0 cosa t l – дальность полета v 0 x = v 0 cosa v 0 x = v 0 cosa= const

h max y x v 0 x = v 0 cosa Вдоль оси ОХ тело движется равномерно с постоянной скоростью, равной проекции начальной скорости на ось ОХ v 0 х v 0 v=v 0 х v 0 y v 0 х v 0 y v v v 0 x = v 0 cosa v=v 0 х a

v 0 x = v 0 cosa у х a v 0 x v 0 y v 0 v v y =0 l h g По вертикали: Вдоль оси ОУ тело движется равнозамедленно, подобно телу, брошенному вертикально вверх со скоростью, равной проекции начальной скорости на ось ОУ h – максимальная высота v 0 у = v 0 sina Таким образом, применимы формулы, которые мы использовали ранее для равноускоренного движения по вертикали g y = -g , v 0 у = v 0 sina = v 0 sina – gt v y = v 0 y +g y t y=y 0 +v 0 y t+g y t 2 /2 = v 0 sinat- gt 2 /2 = v 0 sina – gt

h max y x a v v v=v 0 y v 0 y v 0 y v 0 x v 0 x v y =0 v 0 v 0 x = v 0 cosa Вдоль оси ОУ тело движется равнозамедленно, подобно телу, брошенному вертикально вверх со скоростью, равной проекции начальной скорости на ось ОУ v 0 x = v 0 cosa v=v 0 y

h max y x v 0 у v 0 х v 0 у v у v 0 х v v 0 a v=v 0 у v v=v 0x Некоторые зависимости между величинами при движении под углом к горизонту (баллистическом движении) Время полета в 2 раза больше времени подъема тела на максимальную высоту t= 2t max = 2v 0 sina/g Дальность полета при одной и той же начальной скорости зависит от угла l = x max = v 0 2 sin 2 a /g v = + v 0 у 2 v 0x 2 l = x max

15 0 75 0 45 0 30 0 60 0 y x v 0 x = v 0 cosa Зависимость дальности полета от угла, под которым тело брошено к горизонту l = x max l = x max = v 0 2 sin 2 a /g a v 0 x = v 0 cosa Дальность полета максимальна, когда максимален sin 2 a . Максимальное значение синуса равно единице при угле 2 a = 90 0 , откуда a = 45 0 Для углов, дополняющих друг друга до 90 0 дальность полета одинакова

Движение тела, брошенного горизонтально v 0 у =0 , a=g , g y = – g , y 0 =h s =h , Анализируем рисунок: По горизонтали: тело движется равномерно с постоянной скоростью, равной проекции начальной скорости на ось ОХ v 0 x = v 0 l=v x t= v 0 cosa t l=v 0 x t= v 0 t По вертикали: Тело свободно падает с высоты h . Именно поэтому, применимы формулы для свободного падения: v =gt h =gt 2 /2 y=y 0 -gt 2 /2 v 0 g h l v 0 y =0 v 0 x у х

h max y x a v v v=v 0 y v 0 y v 0 y v 0 x v 0 x v y =0 v 0 v 0 x = v 0 cosa Вдоль оси ОУ тело движется равнозамедленно, подобно телу, брошенному вертикально вверх со скоростью, равной проекции начальной скорости на ось ОУ v 0 x = v 0 cosa v=v 0 y =v 0 sina g y = -g v 0 у = v 0 sina h=y=v 0 sinat- gt 2 /2 = v 0 sina – gt v y = v 0 sina – gt g

По теме: методические разработки, презентации и конспекты

Классный час по правилам дорожного движения в 5-м классе на тему “Движение пешеходов, их права и обязанности”

Цели:1) формировать представления школьников о безопасности дорожного движения;2)повторить правила движения пешеходов по улице и дороге;3) развивать у детей умение находить наиболее безопасный п.

Урок изучения нового материала по теме “Прямолинейное и криволинейное движение. Движение по окружности.” 9 класс

Урок изучения новой темы с использованием призентации, видеоролики.

ЗАНЯТИЕ ПО ПРАВИЛАМ ДОРОЖНОГО ДВИЖЕНИЯ “ДВИЖЕНИЕ НА ВЕЛОСИПЕДЕ” 6 КЛАСС

ПЛАН-КОНСПЕКТ ОТКРЫТОГО ЗАНЯТИЯ ПО ПДД ДЛЯ КЛАССНОГО РУКОВОДИТЕЛЯ 6 КЛАССА.

Тест 7 класс “Механическое движение. Равномерное и неравномерное движения”

Тест 7 класс “Механическое движение. Равномерное и неравномерное движения”.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ по составлению образовательной учебной программы по изучению правил дорожного движения и привитию навыков культурного поведения на дорогах во внеурочное время «АЗБУКА ДОРОЖНОГО ДВИЖЕНИЯ» для учащихся 5 – 9 классов

Методические рекомендации для учителей и классных руководителей, которые на классных часах изучают ПДД.

Урок-путешествие «Движение – жизнь» на тему: «Движение и взаимодействие тел», 7 класс.

За основу этого урока взят «Урок-путешествие “Движение и взаимодействие тел”» учителя физики Дидерле Г. Н., опубликованный на сайте Фестиваль педагогических идей Открытый урокURL: http://festiva.

Проверочная работа по ОБЖ 5 класс по теме: “Дорожное движение. Безопасность участников дорожного движения”

Проверочная работа по ОБЖ (к учебнику Смирнов, Хренников) 5 класс по теме: “Дорожное движение. Безопасность участников дорожного движения”.

Баллистическое движение

Средняя оценка: 4.8

Всего получено оценок: 78.

Средняя оценка: 4.8

Всего получено оценок: 78.

Одним из практически важных разделов механики является баллистика. Основное развитие эта сфера получила с распространением огнестрельного оружия, и до сих пор является основой разработки боевой техники. Однако, и в мирной жизни баллистика находит применение. Кратко рассмотрим эту тему.

Баллистика, как раздел механики

Баллистика – это наука о движении тел в пространстве, представляющая собой раздел механики. В отличие от механики, баллистика изучает в основном движение тел, получивших начальный импульс, и свободно перемещающихся в атмосфере Земли. Основными объектами, изучаемыми баллистикой, являются пули и снаряды, а также, в последнее столетие – ракеты.

Движение в других средах (безвоздушной или водной) баллистика изучает только лишь «на границах применения», например, при сверхдальней артиллерийской стрельбе, когда снаряды поднимаются выше плотных слоев атмосферы, при расчете полета баллистических ракет вне земной атмосферы или при стрельбе по подводным целям.

Поскольку характер баллистического движения пули или снаряда существенно различен в момент выстрела, в момент полета, и в момент попадания в цель, баллистика делится на:

  • внутреннюю, изучающую движение снаряда под действием пороховых газов в канале ствола орудия;
  • промежуточную, изучающую явления, происходящие при выходе снаряда из канала ствола орудия в атмосферу;
  • внешнюю, изучающую полет снаряда в атмосфере;
  • преградную, изучающую движение снаряда в веществе цели.

Рис. 1. Разделы баллистики.

Формулы баллистического движения

Первые достаточно строгие математические расчеты траекторий снарядов были сделаны в XVIв в работах Н.Тарталья. Позже И. Ньютон доказал, что такая траектория является параболой или эллипсом только при отсутствии сопротивления воздуха.

По мере увеличения мощности огнестрельного оружия сопротивление воздуха играет все большую роль, и траектория становится более сложной. Для описания такого движения используется достаточно сложный математический аппарат дифференциального счисления. При этом все равно в расчетах остается большая неопределенность, за счет того, что сила сопротивления воздуха зависит от множества случайных факторов, которые заметно меняют форму траектории. Кроме того, играет роль скорость вылета снаряда из орудия, макроскопические параметры атмосферы (температура, влажность, давление, ветер), вращение земли и вращение самого снаряда вокруг продольной оси.

В результате простые формулы, описывающие кривые второго порядка (круг, эллипс, параболу или гиперболу) в баллистике используются очень ограниченно – только для баллистических ракет, которые большую часть своего полета двигаются вне атмосферы.

Рис. 3. Траектории баллистических ракет.

Для обычного огня в артиллерии применяют специальные баллистические таблицы с готовыми результатами вариантов решений, полученные с помощью численного интегрирования исходных дифференциальных уравнений, описывающих полет снаряда при различных начальных условиях.

Что мы узнали?

Баллистика – это наука о движении тел в пространстве, как правило, в гравитационном поле Земли и под действием сопротивления воздуха. Формулы баллистического движения достаточно сложны, поэтому на практике применяются специальные таблицы, которые позволяют находить форму баллистической траектории с достаточной точностью без сложных математических расчетов.

Баллистическое движение

Содержимое разработки

Возникновение баллистики. В многочисленных войнах на протяжении

всей истории человечества враждующие стороны, доказывая своё превосходство, использовали сначала камни, копья и стрелы, а затем ядра, пули, снаряды и бомбы.

Успех сражения во многом определялся точностью попадания в цель.

При этом точный бросок камня, поражение противника летящим копьём или стрелой фиксировались воином визуально. Это позволяло (при соответствующей тренировке) повторять свой успех в следующем сражении.

Баллистика — раздел механики, изучающий движение тел в поле силы тяжести Земли.

Пули, снаряды и бомбы, так же как и теннисный, и футбольный мячи, и ядро легкоатлета, при полёте движутся по баллистической траектории.

Особенности описания (в первом приближении) баллистического движения тел:

1) тело – материальная точка;

2) независимость значения g от высоты подъема тела;

3) пренебрежение сопротивлением воздуха;

4) отсутствие учета кривизны поверхности Земли и ее вращения вокруг собственной оси.

Это приближение существенно облегчает расчёт траектории тел. Однако такое рассмотрение имеет определённые границы применимости.

Например , при полёте межконтинентальной баллистической ракеты нельзя пренебрегать кривизной поверхности Земли. При свободном падении тел нельзя не учитывать сопротивление воздуха.

Траектория движения тела в поле тяжести.

В евклидовом физическом пространстве перемещение тела по координатным осям X и Y можно рассматривать независимо.

Закон равномерного движения снаряда но оси X имеет вид

Закон равнопеременного движения но оси Y можно представить в виде

Криволинейное баллистическое движение тела можно рассматривать как результат сложения двух прямолинейных движений: равномерного движения по оси X и равнопеременного движения по оси Y.

  • движение тела, брошенного под углом к горизонту.

2.Движение тела, брошенного горизонтально.

Траектория – ветвь параболы.

Тело брошено под углом 60° к вертикали относительно поверхности земли со скоростью v 0 = 10 м/с. Силой сопротивления тела о воздух можно пренебречь.

а) Определите проекции скорости тела на оси х и у в точке бросания А.

б) Определите полную скорость тела в точке С, если известно, что тело оказалось в этой точке через 0,8 полного времени движения. Ускорение свободного падения принять равным 10 м/с2.

v 02 . Какое из тел упадет на землю дальше от точки отсчета. Выберите правильный ответ. А. Дальше упадет первое тело. Б. Дальше упадет второе тело. С. Оба тела упадут на одинаковом расстоянии. 2. Используя условие предыдущего задания, определите, какое из тел упадет на землю раньше. A. Раньше упадет первое тело. Б. Раньше упадет второе тело. B. Оба тела упадут одновременно. 3. На рисунке 35 показана траектория тела под углом к горизонту. а) Покажите направление векторов скорости и ускорения в точках 1 и 2. б) Сравните модули скоростей в этих точках. ” width=”640″

1. На рисунке показаны начальные скорости двух тел, одновременно брошенных горизонтально, причем v 01 v 02 . Какое из тел упадет на землю дальше от точки отсчета. Выберите правильный ответ.

А. Дальше упадет первое тело.

Б. Дальше упадет второе тело.

С. Оба тела упадут на одинаковом

2. Используя условие предыдущего задания, определите, какое из тел упадет на землю раньше.

A. Раньше упадет первое тело.

Б. Раньше упадет второе тело.

B. Оба тела упадут одновременно.

3. На рисунке 35 показана траектория тела под углом к горизонту.

а) Покажите направление векторов скорости и ускорения в точках 1 и 2.

б) Сравните модули скоростей в этих точках.

  • На рисунке 36 показаны начальные скорости

двух тел, брошенных горизонтально, причем

v 01 = v 02 . Какое из тел упадет на землю дальше от точки отсчета? Выберите правильный ответ.

А. Дальше упадет первое тело.

Б. Дальше упадет второе тело.

С. Оба тела упадут на одинаковом расстоянии.

2. Используя условие предыдущего задания, определите, какое из тел упадет на землю раньше.

A. Раньше упадет первое тело.

Б. Раньше упадет второе тело.

B. Оба тела упадут одновременно.

3. На рисунке 37 показана траектория тела под углом к горизонту.

а) Покажите направление векторов скорости и ускорения в точках 1 и 2.

б) Сравните модули скоростей в этих точках.

№ 1 к параграфу 15.

№ 2 к параграфу 15.

Задача №4 к параграфу 15

Вопросы для обсуждения:

1) Написать выражение для расчета:

а) максимальной дальности полета тела;

б) времени полета тела.

2) Сравните отрезки времени t max и t п .

3) При каком угле вылета тела дальность его полета принимает максимальное значение (при неизменной начальной скорости)?

4) Какую траекторию называют навесной? Настильной?

5) Написать выражение для расчета скорости тела в любой момент времени.

6) Какое выражение определяет тангенс угла наклона вектора мгновенной скорости тела к горизонтальной оси?

Баллистическое движение в атмосфере.

Полученные результаты справедливы для идеализированного случая, когда можно пренебречь сопротивлением воздуха. Реальное движение тел в земной атмосфере происходит по траектории, существенно отличающейся от параболической из-за сопротивления воздуха. При увеличении скорости движения тела сила сопротивления воздуха возрастает. Чем больше скорость тела, тем больше отличие реальной траектории от параболы.

При движении снарядов и пуль в воздухе максимальная дальность полёта достигается при угле вылета 30—40°. Расхождение простейшей теории баллистики с экспериментом не означает, что она не верна в принципе. В вакууме или на Луне, где практически нет атмосферы, эта теория даёт правильные результаты. (Для лунных условий во всех формулах следует заменить ускорение свободного падения g на g л .

Баллистическое движение – характеристика, основные формулы и уравнения

змбчб IV

учедеойс йъ чоеыоек вбммйуфйлй

4.2. дЧЙЦЕОЙЕ УОБТСДБ РПД ДЕКУФЧЙЕН УЙМЩ ФСЦЕУФЙ

дЕКУФЧЙЕ УЙМ ФСЦЕУФЙ ОЕ ЪБЧЙУЙФ ПФ УЛПТПУФЙ РПМЈФБ УОБТСДБ. рПЬФПНХ РПОЙЦЕОЙЕ УОБТСДБ ЧП ЧТЕНС РПМЕФБ РПД МЙОЙЕК ВТПУБОЙС ФБЛЦЕ ВХДЕФ УПЧЕТЫБФШУС РП ЪБЛПОХ УЧПВПДОПЗП РБДЕОЙС ФЕМ Й УОБТСДПЧ, ЧЩРХЭЕООЩИ РПД ЛБЛЙН-ФП ХЗМПН Л ЗПТЙЪПОФХ ПТХЦЙС, ПРЙЫЕФ ЛТЙЧХА, РПЛБЪБООХА ОБ ТЙУ.24.

ч ЛПОГЕ РЕТЧПК УЕЛХОДЩ РПМЈФБ РПД ДЕКУФЧЙЕН УЙМЩ ФСЦЕУФЙ УОБТСД ВХДЕФ ОЕ Ч ФПЮЛЕ Б ‘ ЙМЙ Б , Б Ч ФПЮЛЕ б .

ьФП РТПЙУИПДЙФ Ч ТЕЪХМШФБФЕ РПУФХРБФЕМШОПЗП ДЧЙЦЕОЙС УОБТСДБ Ч РЕТЧПОБЮБМШОПН ОБРТБЧМЕОЙЙ Й ДЧЙЦЕОЙС ЕЗП РПД ДЕКУФЧЙЕН УЙМЩ ФСЦЕУФЙ.

тБУУНБФТЙЧБС БОБМПЗЙЮОПЕ РПМПЦЕОЙЕ УОБТСДБ Ч ЛПОГЕ 2, 3 Й Ф.Д. УЕЛХОД, НЩ РПМХЮЙН ФПЮЛЙ в , ч , Й Ф.Д. (ТЙУ. 24).

уПЛТБЭБС РПУМЕДПЧБФЕМШОП РТПНЕЦХФЛЙ ЧТЕНЕОЙ, ЮЕТЕЪ ЛПФПТЩЕ НЩ ПРТЕДЕМСМЙ РПМПЦЕОЙЕ УОБТСДБ, НПЦОП РПМХЮЙФШ ТСД ПЮЕОШ ВМЙЪЛП ПФУФПСЭЙИ ДТХЗ ПФ ДТХЗБ ФПЮЕЛ.

уПЕДЙОЙЧ ЬФЙ ФПЮЛЙ ЛТЙЧПК, НЩ РПМХЮЙН ЗТБЖЙЮЕУЛПЕ ЙЪПВТБЦЕОЙЕ ФТБЕЛФПТЙЙ РПМЈФБ УОБТСДБ ВЕЪ ХЮЈФБ УЙМЩ УПРТПФЙЧМЕОЙС ЧПЪДХИБ.

хТБЧОЕОЙЕ РБТБВПМЙЮЕУЛПК ФТБЕЛФПТЙЙ

нБФЕНБФЙЮЕУЛЙН ЧЩТБЦЕОЙЕН ЪБЛПОБ ДЧЙЦЕОЙС УОБТСДБ СЧМСЕФУС ХТБЧОЕОЙЕ ФТБЕЛФПТЙЙ, ЛПФПТПЕ ПФТБЦБЕФ ЪБЧЙУЙНПУФШ НЕЦДХ ЛППТДЙОБФБНЙ И Й Х Ч МАВПК ФПЮЛЕ РПМЈФБ УОБТСДБ.

чЩЧЕДЕН ХТБЧОЕОЙЕ ФТБЕЛФПТЙЙ УОБТСДБ, МЕФСЭЕЗП РПД ДЕКУФЧЙЕН ФПМШЛП ПДОПК УЙМЩ ФСЦЕУФЙ.

дПРХУФЙН, ЮФП Ч ВЕЪЧПЪДХЫОПН РТПУФТБОУФЧЕ НЩ РТПЙЪЧЕМЙ ЧЩУФТЕМ ЙЪ ПТХДЙС РПД ХЗМПН ВТПУБОЙС Θ0 У ОБЮБМШОПК УЛПТПУФША ТБЧОПК V0 (ТЙУ. 25).

чЩМЕФЕЧ ЙЪ УФЧПМБ, УОБТСД ПРЙЫЕФ ЛБЛХА-ФП ФТБЕЛФПТЙА Й ХРБДЈФ Ч ФПЮЛЕ д .

оЕПВИПДЙНП ОБКФЙ, ОБ ЛБЛПК ЧЩУПФЕ ОБД ЗПТЙЪПОФПН ПТХЦЙС МЕФЙФ УОБТСД ОБ ХДБМЕОЙЙ X ПФ ФПЮЛЙ ЧЩМЕФБ РТЙ ДБООЩИ ЪОБЮЕОЙСИ V0 , Θ0.

дМС ЧЩЧПДБ ХТБЧОЕОЙС РПНЕУФЙН ОБЮБМП УЙУФЕНЩ ЛППТДЙОБФ Ч ФПЮЛЕ ЧЩМЕФБ, ЛБЛ ЬФП РПЛБЪБОП ОБ ТЙУ. 25.

йЪ ТЙУХОЛБ ЧЙДОП, ЮФП

.

пРТЕДЕМЙН ЪОБЮЕОЙС бч Й бу .

ъОБЮЕОЙЕ бч ОБИПДЙФУС ЙЪ ФТЕХЗПМШОЙЛБ пбч ;

бу ЕУФШ ОЕ ЮФП ЙОПЕ, ЛБЛ РПОЙЦЕОЙЕ УОБТСДБ РПД МЙОЙЕК ВТПУБОЙС ЪБ ЧТЕНС ЕЗП РПМЈБ ДП ФПЮЛЙ у .

рПОЙЦЕОЙЕ ЛБЛ РХФШ, РТПИПДЙНЩК УЧПВПДОП РБДБАЭЙН ФЕМПН, ПРТЕДЕМСЕФУС РП ЖПТНХМЕ:

.

чТЕНС РПМЈФБ УОБТСДБ ДП ФПЮЛЙ у ОБИПДЙФУС УМЕДХАЭЙН ПВТБЪПН:

.

йЪ ФТЕХЗПМШОЙЛБ пбч ЧЙДОП, ЮФП

.

.

.

рПДУФБЧЙЧ ОБКДЕООЩЕ ЪОБЮЕОЙС бч Й бу Ч ЧЩТБЦЕОЙЕ

,

РПМХЮЙН ХТБЧОЕОЙЕ ФТБЕЛФПТЙЙ:

.

рПМХЮЕООПЕ ХТБЧОЕОЙЕ ПРЙУЩЧБЕФ ФТБЕЛФПТЙА УОБТСДБ, ЛПФПТБС РТЕДУФБЧМСЕФ РБТБВПМХ Ч ВЕЪЧПЪДХЫОПН РТПУФТБОУФЧЕ РПД ДЕКУФЧЙЕН ФПМШЛП ПДОПК УЙМЩ ФСЦЕУФЙ.

фТБЕЛФПТЙС РПМЈФБ УОБТСДПЧ Ч ВЕЪЧПЪДХЫОПН РТПУФТБОУФЧЕ РТЕДУФБЧМСЕФ УПВПК ЛТЙЧХА, ОБЪЩЧБЕНХА РБТБВПМПК .

рПЬФПНХ ФТБЕЛФПТЙА РПМЈФБ УОБТСДПЧ Ч РХУФПФЕ ОБЪЩЧБАФ РБТБВПМЙЮЕУЛПК ФТБЕЛФПТЙЕК.

рБТБВПМЙЮЕУЛЙЕ ФТБЕЛФПТЙЙ ЙНЕАФ УМЕДХАЭЙЕ УЧПКУФЧБ:

  • ФТБЕЛФПТЙС РТЕДУФБЧМСЕФ УПВПК РМПУЛХА УЙННЕФТЙЮОХА ЛТЙЧХА ПФОПУЙФЕМШОП ЧЕТЫЙОЩ, Ф.Е. ЧЕТЫЙОБ ФТБЕЛФПТЙЙ ОБИПДЙФУС РПУТЕДЙОЕ РПМОПК ЗПТЙЪПОФБМШОПК ДБМШОПУФЙ;

ЧПУИПДСЭБС ЧЕФЧШ ФТБЕЛФПТЙЙ ТБЧОБ ОЙУИПДСЭЕК ЧЕФЧЙ;

ЧТЕНС РПМЈФБ УОБТСДБ ПФ ФПЮЛЙ ЧЩМЕФБ ДП ЧЕТЫЙОЩ ТБЧОП ЧТЕНЕОЙ РПМЈФБ ПФ ЧЕТЫЙОЩ ДП ФПЮЛЙ РБДЕОЙС;

ХЗПМ РБДЕОЙС РП УЧПЕК БВУПМАФОПК ЧЕМЙЮЙОЕ ТБЧЕО ХЗМХ ВТПУБОЙС;

ПЛПОЮБФЕМШОБС УЛПТПУФШ УОБТСДБ ТБЧОБ ОБЮБМШОПК УЛПТПУФЙ;

  • ХЗПМ ОБЙВПМШЫЕК ЗПТЙЪПОФБМШОПК ДБМШОПУФЙ ТБЧЕО 45°.
  • рТЙ УФТЕМШВЕ Ч ЧПЪДХИЕ УОБТСДБНЙ У ОЕВПМШЫЙНЙ ОБЮБМШОЩНЙ УЛПТПУФСНЙ ЙИ ФТБЕЛФПТЙЙ ВМЙЪЛЙ Л РБТБВПМЙЮЕУЛЙН.

    рПЬФПНХ, ЛБЛ ХЛБЪЩЧБМПУШ Ч ПЮЕТЛЕ РП ЙУФПТЙЙ ВБММЙУФЙЛЙ, ДПМЗПЕ ЧТЕНС ЧУЕ ТБУЮЈФЩ ДМС УФТЕМШВЩ ЧЕМЙУШ РП ЧЩЧЕДЕООПНХ ХТБЧОЕОЙА РБТБВПМЙЮЕУЛПК ФТБЕЛФПТЙЙ.

    Ссылка на основную публикацию