Баллистическое движение – характеристика, основные формулы и уравнения

Баллистическое движение – характеристика, основные формулы и уравнения

Тема работы

« Изучение баллистического движения»

Выполнил:

Кривоногов Александр Владимирович

учащийся 10 класса

МБОУ Ломовской СШ

Руководитель:

Кривоногова Ирина Александровна

Учитель физики МБОУ Ломовская СШ

Высшая кв. категория

Неискушенному в науке и технике человеку может показаться, что сейчас, когда бурно развиваются радиоэлектроника, атомная техника и кибернетика, о механике забыли. Однако это не так. Академик Л.И. Седов пишет: «Все достижения в современной технике, авиации, в ракетной технике, в промышленности основаны на использовании и приложении результатов и методов ньютоновской механики.»

Я интересуюсь развитием военной техники и современным оружием. Так устроен мир: побеждает тот, кто лучше вооружен. Военный историк и теоретик, прусский генерал Карл Клаузевиц (1780-1831) когда – то сказал: «Война – это продолжение политики другими средствами». История человечества, к сожалению, в большей своей части сводится к истории войн. Поэтому развитие военной техники происходило параллельно совершенствованию техники гражданской, а зачастую и опережало ее. Издавна о силе армии противника было принято судить по количеству у него пушек и их калибру, поэтому особенно меня заинтересовала артиллерия – бог войны.

Тема моего исследованиябаллистическое движение.

В многочисленных войнах на протяжении всей истории человечества, враждующие стороны, доказывая свое превосходство, использовали сначала камни, копья и стрелы, а затем ядра, снаряды и бомбы.

Успех сражения во многом определялся точностью попадания в цель. До XVI века артиллеристы пользовались таблицами, в которых на основе практических наблюдений были указаны углы, ветер, дальность полета, но меткость попадания была очень низкой. Возникла проблема научного предсказания – как достигнуть высокой меткости попадания снаряда.

Впервые разрешить эту проблему удалось великому астроному и физику Галилео Галилею, исследования которого стимулировали появление баллистики(от греческого слова ballo – бросаю). Баллистика – раздел механики, изучающий движение тел в поле силы тяжести Земли.

Я предполагаю, что дальность полета снаряда зависит от нескольких факторов:

1) от начальной скорости снаряда

2) от угла направления движения тела.

3) от начальной высоты

ЦЕЛЬ ИССЛЕДОВАНИЯ:

1. Используя идеализированную компьютерную модель,изучить баллистическое движение.

2. Выяснить от чего зависит дальность полета снаряда.

3. Выяснить при каком угле направления движения дальность полета будет максимальной.

4. Убедиться в том, что движение по оси Ох является действительно равномерным. Если движение является равномерным, то скорость должна оставаться неизменной.

5. Убедиться в том, что движение вдоль оси Оу является равнопеременным.

6. Убедиться в верности полученных результатов на механической модели

7. Сделать соответствующие выводы

В условиях данной модели тело будем рассматривать как материальную точку, движущуюся с постоянным ускорением свободного падения, при этом пренебрегая изменением высоты подъема тела, сопротивлением воздуха, кривизной поверхности Земли, ее вращением вокруг собственной оси.

Это приближение существенно облегчает расчет траектории тел. Однако такое рассмотрение имеет определенные границы применимости. Например, при полете межконтинентальной баллистической ракеты нельзя пренебрегать кривизной поверхности Земли. При свободном падении тел нельзя не учитывать сопротивление воздуха, так как реальные результаты сильно отличаются от теоретических.

Заслугой Галилео Галилея стало то, что он впервые предложил рассматривать баллистическое движение как сумму двух простых, в частности, он предложил данное движение представить как результат сложения прямолинейных движений: равномерного движения по оси Ох и равнопеременного движения по оси Оу. Таким образом, закон баллистического движения в координатной форме будет: Х=(υо cos α) t ; Ү=о sin α) t – gt 2 /2

Уравнение траектории снаряда можно получить, исключая время из системы уравнений. Выразив его из первого уравнения, и подставив во второе, получим:

Ү= x tg α – gx 2 /2 υо 2 cos 2 α

Графиком квадратичной функции является парабола. Так как при х=0 и у=0 парабола проходит через начало координат. Определим основные параметры баллистического движения:время подъема на максимальную высоту, время и дальность полета. Вследствие независимости движений по координатным осям, подъем снаряда по вертикали определяется только проекцией начальной скорости υоу на ось У. Тогда время подъема на максимальную высоту равно

t max = υо sin α/g Максимальная высота подъема может быть рассчитана по формуле у max = υо 2 sin 2 α/ 2 g Подставляя время полета в закон движения по оси Х, получаем максимальную дальность полета: х max = υо 2 sin 2α/g

Следовательно, дальность полета тела при одной и той же начальной скорости зависит от угла, под которым тело брошено к горизонту.

Дальность полета максимальна, когда максимален sin 2α. Максимальное значение синуса равно при угле 90 о , т. е. 2α =90 о , α=45 о .

Полученные результаты справедливы для идеализированного случая, когда можно пренебречь сопротивлением воздуха. Реальное движение тел в земной

атмосфере происходит по баллисти-

ческой траектории, существенно

отличающейся от параболической

из-за сопротивления воздуха.

Самым первым баллистическим орудием была катапульта. Заряжалась она камнями и ядрами. Потом придумали другую машину – баллисту. Она могла бросать не только камни и бочки, но и тяжелые стрелы и даже бревна, окованные железом.

Первые образцы огнестрельных орудий ХIV века, назывались бомбарды, что в переводе с латыни означало «гром». Калибры первых бомбард были невелики, не больше апельсина. Однако, стремление пробивать все более толстые стены крепостей привело к появлению орудий- монстров.

Так выглядела турецкая бомбарда «Бешенная

Маргарита». Ее калибр – 22 дюйма. Общая длина

орудия -4,2 м, вес – 16000 кг. Одно каменное

ядро тянуло на 20 пудов. ( 320 кг) На заряжение

и прицеливание больших бомбард тратились сутки.

В первую мировую войну стрельба немцев на расстоянии 120 км по Парижу была осуществлена так. Ствол длинноствольной пушки « Большой Берты» был направлен под углом 52 о к горизонту. Снаряд большую часть траектории проходил в стратосфере,достигая высоты до 40 км над Землей, где сопротивление воздуха ничтожно. Эта мортира имела массу снаряда 900 кг,калибр 420 мм и вес 42,6 т.

Самой большой пушкой Второй мировой войны считается немецкая пушка «Большая Дора», имевшая калибр 80 см. Вес – 1350 т. Начальная скорость снаряда – до 820м/с, а дальность стрельбы – 32 км.

А это уже наши достижения. Система залпового огня «Смерч». Одновременно выпускает 12 ракет калибром 300 мм, накрывая площадь 672 тыс. м 2 на расстоянии 20 – 70 км. Боеприпасы имеют 72 типа боевых головок.

Советские баллистические ракеты

Межконтинентальная ракета Р- 9 1961г.

Межконтинентальная ракета на твердом

топливе РТ-1. 1963г.

Межконтинентальная ракета на твердом

МЕТОДИКА ЭКСПЕРИМЕНТА:

Используя компьютерную модель, задать начальные условия эксперимента. Получить графики движения тела.

Исследовать зависимость дальности полета от начальной скорости, угла и начальной высоты. Данные занести в таблицы.

Убедиться в том, что движение по оси х равномерное. Для этого рассмотреть модель в стробоскопическом режиме.

Собрать механическую модель. Убедиться в правильности сделанных выводов на практике, используя механические модели баллистического движения.

1.Исследование зависимости дальности полета от скорости

Баллистическое движение – характеристика, основные формулы и уравнения

Цель работы: изучение движения тела, брошенного под углом к горизонту; определение времени, дальности и высоты полета.

Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается единственная сила – сила тяжести. Поэтому вследствие 2-го закона Ньютона тело движется с ускорением, равным ускорению свободного падения ; проекции ускорения на координатные оси равны ах = 0, ау = -g.

Любое сложное движение материальной точки можно представить как наложение независимых движений вдоль координатных осей, причем в направлении разных осей вид движения может отличаться. В нашем случае движение летящего тела можно представить как наложение двух независимых движений: равномерного движения вдоль горизонтальной оси (оси Х) и равноускоренного движения вдоль вертикальной оси (оси Y) (рис. 1).

Проекции скорости тела, следовательно, изменяются со временем следующим образом:

где – начальная скорость, α – угол бросания.

Координаты тела, следовательно, изменяются так:

При нашем выборе начала координат начальные координаты (рис. 1) Тогда

(1)

Проанализируем формулы (1). Определим время движения брошенного тела. Для этого положим координату y равной нулю, т.к. в момент приземления высота тела равна нулю. Отсюда получаем для времени полета:

.(2)

Второе значение времени, при котором высота равна нулю, равно нулю, что соответствует моменту бросания, т.е. это значение также имеет физический смысл.

Дальность полета получим из первой формулы (1). Дальность полета – это значение координаты х в конце полета, т.е. в момент времени, равный t0. Подставляя значение (2) в первую формулу (1), получаем:

.(3)

Из этой формулы видно, что наибольшая дальность полета достигается при значении угла бросания, равном 45 градусов.

Наибольшую высоту подъема брошенного тела можно получить из второй формулы (1). Для этого нужно подставить в эту формулу значение времени, равное половине времени полета (2), т.к. именно в средней точке траектории высота полета максимальна. Проводя вычисления, получаем

.(4)

Из уравнений (1) можно получить уравнение траектории тела, т.е. уравнение, связывающее координаты х и у тела во время движения. Для этого нужно из первого уравнения (1) выразить время:

и подставить его во второе уравнение. Тогда получим:

Это уравнение является уравнением траектории движения. Видно, что это уравнение параболы, расположенной ветвями вниз, о чем говорит знак «-» перед квадратичным слагаемым. Следует иметь в виду, что угол бросания α и его функции – здесь просто константы, т.е. постоянные числа.

Закон сохранения импульса, кинетическая и потенциальные энергии, мощность силы

Теория к заданию 3 из ЕГЭ по физике

Импульс тела

Импульсом тела называется величина, равная произведению массы тела на его скорость.

Следует помнить, что речь идет о теле, которое можно представить как материальную точку. Импульс тела ($р$) называют также количеством движения. Понятие количества движения было введено в физику Рене Декартом (1596—1650). Термин «импульс» появился позже (impulsus в переводе с латинского означает «толчок»). Импульс является векторной величиной (как и скорость) и выражается формулой:

Направление вектора импульса всегда совпадает с направлением скорости.

За единицу импульса в СИ принимают импульс тела массой $1$ кг, движущегося со скоростью $1$ м/с, следовательно, единицей импульса является $1$ кг $·$ м/с.

Если на тело (материальную точку) действует постоянная сила в течение промежутка времени $∆t$, то постоянным будет и ускорение:

где, $<υ_1>↖<→>$ и $<υ_2>↖<→>$ — начальная и конечная скорости тела. Подставив это значение в выражение второго закона Ньютона, получим:

Раскрыв скобки и воспользовавшись выражением для импульса тела, имеем:

Здесь $↖<→>–↖<→>=∆p↖<→>$ — изменение импульса за время $∆t$. Тогда предыдущее уравнение примет вид:

Выражение $∆p↖<→>=F↖<→>∆t$ представляет собой математическую запись второго закона Ньютона.

Произведение силы на время ее действия называют импульсом силы. Поэтому изменение импульса точки равно изменению импульса силы, действующей на нее.

Выражение $∆p↖<→>=F↖<→>∆t$ называется уравнением движения тела. Следует заметить, что одно и то же действие — изменение импульса точки — может быть получено малой силой за большой промежуток времени и большой силой за малый промежуток времени.

Импульс системы тел. Закон изменения импульса

Импульсом (количеством движения) механической системы называется вектор, равный сумме импульсов всех материальных точек этой системы:

Законы изменения и сохранения импульса являются следствием второго и третьего законов Ньютона.

Рассмотрим систему, состоящую из двух тел. Силы ($F_<12>$ и $F_<21>$ на рисунке, с которыми тела системы взаимодействуют между собой, называются внутренними.

Пусть кроме внутренних сил на систему действуют внешние силы $↖<→>$ и $↖<→>$. Для каждого тела можно записать уравнение $∆p↖<→>=F↖<→>∆t$. Сложив левые и правые части этих уравнений, получим:

В левой части стоит геометрическая сумма изменений импульсов всех тел системы, равная изменению импульса самой системы — $<∆p_<сист>>↖<→>$.С учетом этого равенство $<∆p_1>↖<→>+<∆p_2>↖<→>=(↖<→>+↖<→>)∆t$ можно записать:

где $F↖<→>$ — сумма всех внешних сил, действующих на тело. Полученный результат означает, что импульс системы могут изменить только внешние силы, причем изменение импульса системы направлено так же, как суммарная внешняя сила. В этом суть закона изменения импульса механической системы.

Внутренние силы изменить суммарный импульс системы не могут. Они лишь меняют импульсы отдельных тел системы.

Закон сохранения импульса

Из уравнения $<∆p_<сист>>↖<→>=F↖<→>∆t$ вытекает закон сохранения импульса. Если на систему не действуют никакие внешние силы, то правая часть уравнения $<∆p_<сист>>↖<→>=F↖<→>∆t$ обращается в ноль, что означает неизменность суммарного импульса системы:

Система, на которую не действуют никакие внешние силы или равнодействующая внешних сил равна нулю, называется замкнутой.

Закон сохранения импульса гласит:

Суммарный импульс замкнутой системы тел остается постоянным при любых взаимодействиях тел системы между собой.

Полученный результат справедлив для системы, содержащей произвольное число тел. Если сумма внешних сил не равна нулю, но сумма их проекций на какое-то направление равна нулю, то проекция импульса системы на это направление не меняется. Так, например, система тел на поверхности Земли не может считаться замкнутой из-за силы тяжести, действующей на все тела, однако сумма проекций импульсов на горизонтальное направление может оставаться неизменной (при отсутствии трения), т. к. в этом направлении сила тяжести не действует.

Реактивное движение

Рассмотрим примеры, подтверждающие справедливость закона сохранения импульса.

Возьмем детский резиновый шарик, надуем его и отпустим. Мы увидим, что когда воздух начнет выходить из него в одну сторону, сам шарик полетит в другую. Движение шарика является примером реактивного движения. Объясняется оно законом сохранения импульса: суммарный импульс системы «шарик плюс воздух в нем» до истечения воздуха равен нулю; он должен остаться равным нулю и во время движения; поэтому шарик движется в сторону, противоположную направлению истечения струи, и с такой скоростью, что его импульс по модулю равен импульсу воздушной струи.

Реактивным движением называют движение тела, возникающее при отделении от него с какой- либо скоростью некоторой его части. Вследствие закона сохранения импульса направление движения тела при этом противоположно направлению движения отделившейся части.

На принципе реактивного движения основаны полеты ракет. Современная космическая ракета представляет собой очень сложный летательный аппарат. Масса ракеты складывается из массы рабочего тела (т. е. раскаленных газов, образующихся в результате сгорания топлива и выбрасываемых в виде реактивной струи) и конечной, или, как говорят, «сухой» массы ракеты, остающейся после выброса из ракеты рабочего тела.

Когда реактивная газовая струя с большой скоростью выбрасывается из ракеты, сама ракета устремляется в противоположную сторону. Согласно закону сохранения импульса, импульс $m_

υ_p$, приобретаемый ракетой, должен быть равен импульсу $m_<газ>·υ_<газ>$ выброшенных газов:

Отсюда следует, что скорость ракеты

Из этой формулы видно, что скорость ракеты тем больше, чем больше скорость выбрасываемых газов и отношение массы рабочего тела (т. е. массы топлива) к конечной («сухой») массе ракеты.

Формула $υ_p=(>/)·υ_<газ>$ является приближенной. В ней не учитывается, что по мере сгорания топлива масса летящей ракеты становится все меньше и меньше. Точная формула для скорости ракеты была получена в 1897 г. К. Э. Циолковским и носит его имя.

Формула Циолковского позволяет рассчитать запасы топлива, необходимые для сообщения ракете заданной скорости.

Работа силы

Термин «работа» был введен в физику в 1826 г. французским ученым Ж. Понселе. Если в обыденной жизни работой называют лишь труд человека, то в физике и, в частности, в механике принято считать, что работу совершает сила. Физическую величину работы обычно обозначают буквой $А$.

Работа силы — это мера действия силы, зависящая от ее модуля и направления, а также от перемещения точки приложения силы. Для постоянной силы и прямолинейного перемещения работа определяется равенством:

где $F$ — сила, действующая на тело, $∆r↖<→>$ — перемещение, $α$ — угол между силой и перемещением.

Работа силы равна произведению модулей силы и перемещения и косинуса угла между ними, т. е. скалярному произведению векторов $F↖<→>$ и $∆r↖<→>$.

Работа — величина скалярная. Если $α 0$, а если $90° А_п$, КПД всегда меньше $1$ (или $

Импульс силы — определение, формула и закон сохранения величины

С помощью законов Ньютона можно решать задачи, если известны все факторы, влияющие на физическое тело. Однако некоторые виды воздействия настолько кратковременны, что их трудно измерить. В этом случае вводят новые показатели — импульс силы и тела. Эти величины используются, чтобы не решать физических уравнений, а сразу перейти к их следствиям, что упрощает решение некоторых задач.

История открытия

Слово «импульс» в переводе с латинского означает «толчок». В некоторых книгах вместо этого термина используется термин «количество движения». Это понятие ввели в науку тогда же, когда Исаак Ньютон открыл и сформулировал законы, которые позже были названы в его честь.

Впервые слово «импульс» использовал учёный Рене Декарт в начале XVII века. Тогда в физике ещё не применялось понятие массы. Декарт определил эту математическую величину как произведение скорости тела и его «величины». В дальнейшем Ньютон уточнил формулировку Декарта. Согласно его определению, импульс (или количество движения) пропорционален величине скорости и массы движущегося тела.

Определение и свойства

Импульсом силы в физике принято называть величину, равную произведению этой силы на время. Фактически она представляет собой следующую закономерность F∆t = ∆P (формула импульса силы). Отсюда можно вычислить, в чём измеряется импульс силы — эти единицы называются ньютон-секундами. С помощью этого произведения можно описать следующие физические явления:

  • Полёт выпущенной из лука стрелы. Чем дольше она взаимодействует с тетивой лука, тем больше изменяется её движение и тем выше конечная скорость полёта.
  • Две точки или два шарика, сталкивающиеся друг с другом (упругий удар). Согласно третьему закону Ньютона, эти тела при ударе имеют равные модули силы. Следовательно, модули импульса тоже должны быть равными. При этом масса шариков может быть неодинаковой.

В релятивистской физике соотношение кинетической энергии и количества движения электрона характеризуется выражением p = (T 2 + 2Tmc 2 ) ½ /c.

Силы одинаковой величины, которые действуют на протяжении одинакового отрезка времени, вызывают одинаковые импульсы силы. Причём этот показатель не зависит от массы тела.

Для показателя изменения справедливо и обратное утверждение. Сумма сил, которые действуют на тело, равна отношению импульса силы ко времени.

В переводе с латинского слово «импульс» означает «толчок». Этот термин в некоторых источниках заменён на «количество движения».

Импульс силы направлен в ту же сторону, что и вектор скорости движения.

Импульс тела

Согласно современному определению, импульсом тела принято называть физическую величину, которая равняется произведению массы и скорости: P = mV, где P и V являются векторными величинами.

Направление вектора этого параметра сонаправлено с вектором скорости. Общепринятой единицей измерения в системе СИ принято считать 1 кг*м/с. Такие характеристики имеет тело массой в 1 кг, движущееся в пространстве со скоростью 1 м/с.

Этот показатель используется в физике для описания механического движения материальной точки. В быту люди оценивают движение тела через его скорость. Чем больше скорость, с которой перемещается тело в пространстве, тем больше его «количество движения». Если тело встречает на своём пути преграду, их взаимодействие зависит не только от скорости, но и от массы.

Например, по дороге с одинаковой скоростью движется мотоцикл и грузовик с кузовом, полным камня. При столкновении с забором или другой преградой разрушения от грузовика будут гораздо больше, чем от мотоцикла. Отсюда видно, что одной скорости недостаточно для характеристики движения, поэтому используется понятие «импульс тела».

Взаимодействие в замкнутой системе

Если два физических тела взаимодействуют между собой, одно из них может частично или полностью передавать другому свой импульс. Если при этом на объекты не действуют дополнительные факторы, такую систему принято называть замкнутой.

При таких условиях векторная сумма импульсов всех объектов системы будет сохраняться. При этом она не зависит от характера и количества взаимодействий между участниками системы. Это правило получило название закона сохранения импульса, формула которого выглядит как p1 +p2 = p1′ +p2′. Оно выведено из второго и третьего законов Ньютона.

В качестве примера можно взять 2 произвольных взаимодействующих объекта, на которые не действуют никакие внешние факторы:

  • Силы взаимодействия тел обозначаются как F1 и F2.
  • Согласно 3-му закону Ньютона, F2 = — F1.
  • Если объекты взаимодействуют в течение момента времени t, то параметры их сил имеют одинаковые модули, но их векторы направлены в противоположные стороны: F2t = — F1t.
  • Если применить к этой системе второй закон Ньютона, станет видно, что при взаимодействии этих тел их суммарный импульс останется неизменным.

Таким образом, при парном взаимодействии тел в замкнутой системе внутренние силы не меняют векторную сумму всех импульсов, входящих в неё. С помощью этого правила можно находить скорости объектов в закрытой системе, даже если неизвестны показатели действующих сил. В качестве примера можно рассмотреть реактивное движение:

  • Во время выстрела из артиллерийского орудия возникает эффект отдачи — снаряд движется в одном направлении, а пушка откатывается в противоположную.
  • В этом случае пушка и снаряд — это два объекта одной системы.
  • Скорость пушки зависит от соотношения массы её и ядра и от скорости снаряда.
  • Скорости пушки и снаряда можно обозначить как V и v, а массу как M и m.
  • Формулу в этом случае можно записать как уравнение MV + mv =0.

Если тело или частица сохраняет неподвижность, количество движения равняется нулю. Напротив, любая движущаяся точка обладает показателем, отличным от 0. Количество движения тела изменяется пропорционально его скорости.

Закон сохранения может оказаться справедливым и для незамкнутой системы. Это возможно, если сила или время внешнего воздействия стремится к нулю. В этом случае внешними показателями можно пренебречь.

Принцип решения задач

Приведённый закон часто используется для решения физических задач. Общая схема их решения выглядит следующим образом:

  • Записываются имеющиеся условия.
  • Делается схематическое изображение. Обязательно указываются векторы скоростей.
  • На рисунке определяется координатная ось для проецирования.
  • Формула закона записывается в векторной форме.
  • Далее те же показатели отражаются в проекции на оси.
  • Проводятся вычисления и записывается ответ.

Выведение законов Ньютона

Известно, что импульс силы равняется изменению импульса тела:

Ft = mv—mv0, тогда Ft = m (v—v0). Отсюда следует, что F = m (v—v0)/t.

Отношение изменения скорости ко времени — это показатель ускорения. Таким образом, сила зависит от ускорения. Если записать уравнение как a = (v—v0)/t, можно вывести формулу второго закона: F = ma.

Можно сформулировать закон и по-другому: сила, которая была приложена к физическому объекту, равняется отношению изменения величины импульса к отрезку времени, за который он изменился.

Третий закон Ньютона выводится исходя из закона сохранения импульса. Для нахождения используются векторные показатели скоростей, то есть скорость может иметь различное направление.

Время в закрытой системе для двух взаимодействующих объектов является величиной одинаковой. Исходя из этого, формулировка третьего закона звучит следующим образом: два объекта взаимодействуют, при этом имеют одинаковую величину силы, но противоположные по направленности векторы, которые идут по направлению к друг другу. Отсюда следует, что модульные значения этих сил равнозначны.

Применение этих законов затруднительно при оценке кратковременного взаимодействия объектов (удара). В этом случае удобнее использовать для расчётов закономерности сохранения силы и количества движения.

Импульс силы – определение, формула и закон сохранения величины

Зная связь ускорения тела со скоростью его движения и предполагая, что масса тела не изменяется с течением времени, выражение можно переписать несколько в ином виде:

Полученное выражение показывает, что результат действия силы можно понимать и несколько иначе, чем мы делали это раньше: действие силы на тело приводит к изменению некоторой величины, характеризующей это тело, которая равна произведению массы тела на скорость его движения . Эту величину называют импульсом тела :

Направление вектора импульса тела всегда совпадает с направлением вектора скорости движения.

Слово “импульс” в переводе с латинского означает “толчок”. В некоторых книгах вместо термина “импульс” используется термин “количество движения”.

Эта величина была введена в науку примерно в тот же период времени, когда Ньютоном были открыты законы, названные впоследствии его именем. Ещё в первой половине XVII века понятие импульса введено Рене Декартом . Так как физическое понятие массы в то время отсутствовало, он определил импульс как произведение «величины тела на скорость его движения». Позже такое определение было уточнено Исааком Ньютоном . Согласно Ньютону, «количество движения есть мера такового, устанавливаемая пропорционально скорости и массе».

Поскольку , то за единицу импульса в СИ принимают импульс тела массой 1 кг, движущегося со скорость 1 м/с. Соответственно единицей импульса тела в СИ является 1 кг * м/c.

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, то такая система называется замкнутой .

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Этот фундаментальный закон природы называется законом сохранения импульса . Он является следствием из второго и третьего законов Ньютона.

Рассмотрим какие-либо два взаимодействующих тела, входящих в состав замкнутой системы. Силы взаимодействия между этими телами обозначим через и По третьему закону Ньютона Если эти тела взаимодействуют в течение времени t , то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны: Применим к этим телам второй закон Ньютона:

где и – импульсы тел в начальный момент времени, и – импульсы тел в конце взаимодействия. Из этих соотношений следует:

Это равенство означает, что в результате взаимодействия двух тел их суммарный импульс не изменился. Рассматривая теперь всевозможные парные взаимодействия тел, входящих в замкнутую систему, можно сделать вывод, что внутренние силы замкнутой системы не могут изменить ее суммарный импульс, т. е. векторную сумму импульсов всех тел, входящих в эту систему.

Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны. Примером может служить реактивное движение.

При стрельбе из орудия возникает отдача – снаряд движется вперед, а пушка– откатывается назад. Снаряд и пушка – два взаимодействующих тела. Скорость, которую приобретает пушка при отдаче, зависит только от скорости снаряда и отношения масс. Если скорости пушки и снаряда обозначить через и а их массы через M и m , то на основании закона сохранения импульса можно записать в проекциях на ось OX:

Если тело покоится, импульс равен нулю. Ненулевым импульсом обладает любое, движущееся тело. Например, когда мяч покоится, его импульс равен нулю. После удара он приобретает импульс. Импульс тела изменяется, так как изменяется скорость.

Рассмотрим задачу, которая демонстрирует связь импульса силы и изменения импульса тела.

Пример. Масса мяча равна 400 г, скорость, которую приобрел мяч после удара – 30 м/с. Сила, с которой нога действовала на мяч – 1500 Н, а время удара 8 мс. Найти импульс силы и изменение импульса тела для мяча.

Изменение импульса тела:

Как определить изменение импульса тела? Необходимо найти численное значение импульса в один момент времени, затем импульс через промежуток времени. От второй найденной величины отнять первую. Внимание! Вычитать надо вектора, а не числа. То есть из второго вектора импульса отнять первый вектор. Смотрите вычитание векторов.

Пример. Оценить среднюю силу со стороны пола, действующую на мяч во время удара.

Сила реакции изменяется в течение времени удара, поэтому возможно найти среднюю силу реакции пола.

2) Изменение импульса тела изображено на рисунке

3) Из второго закона Ньютона

Главное запомнить

1) Формулы импульса тела, импульса силы;
2) Направление вектора импульса;
3) Находить изменение импульса тела

Законы сохранения в механике

Импульс тела

Импульс тела – это векторная физическая величина, равная произведению массы тела на его скорость:

Обозначение – ​ ( p ) ​, единицы измерения – (кг·м)/с.

Импульс тела – это количественная мера движения тела.
Направление импульса тела всегда совпадает с направлением скорости его движения.
Изменение импульса тела равно разности конечного и начального значений импульса тела:

где ​ ( p_0 ) ​ – начальный импульс тела,
​ ( p ) ​ – конечный импульс тела.

Если на тело действует нескомпенсированная сила, то его импульс изменяется. При этом изменение импульса тела равно импульсу подействовавшей на него силы.

Импульс силы – это количественная мера изменения импульса тела, на которое подействовала эта сила.

Обозначение – ​ ( F!Delta t ) ​, единицы измерения — Н·с.
Импульс силы равен изменению импульса тела:

Направление импульса силы совпадает по направлению с изменением импульса тела.

Второй закон Ньютона (силовая форма):

Важно!
Следует всегда помнить, что совпадают направления векторов:

Импульс системы тел

Импульс системы тел равен векторной сумме импульсов тел, составляющих эту систему:

При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которых мы изучаем, называется механической системой или просто системой.

Рассмотрим систему, состоящую из трех тел. На тела системы действуют внешние силы, а между телами действуют внутренние силы.
​ ( F_1,F_2,F_3 ) ​ – внешние силы, действующие на тела;
​ ( F_<12>, F_<23>, F_<31>, F_<13>, F_<21>, F_ <32>) ​ – внутренние силы, действующие между телами.
Вследствие действия сил на тела системы их импульсы изменяются. Если за малый промежуток времени сила заметно не меняется, то для каждого тела системы можно записать изменение импульса в виде уравнения:

В левой части каждого уравнения стоит изменение импульса тела за малое время ​ ( Delta t ) ​.
Обозначим: ​ ( v_0 ) ​ – начальные скорости тел, а ​ ( v^ ) ​ – конечные скорости тел.
Сложим левые и правые части уравнений.

Но силы взаимодействия любой пары тел в сумме дают нуль.

Важно!
Импульс системы тел могут изменить только внешние силы, причем изменение импульса системы пропорционально сумме внешних сил и совпадает с ней по направлению. Внутренние силы, изменяя импульсы отдельных тел системы, не изменяют суммарный импульс системы.

Закон сохранения импульса

Закон сохранения импульса
Векторная сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы между собой:

Замкнутая система – это система, на которую не действуют внешние силы.
Абсолютно упругий удар – столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций.
При абсолютно упругом ударе взаимодействующие тела до и после взаимодействия движутся отдельно.

Закон сохранения импульса для абсолютно упругого удара:

Абсолютно неупругий удар – столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.

Закон сохранения импульса для абсолютно неупругого удара:

Реактивное движение – это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-то его части.
Принцип реактивного движения основан на том, что истекающие из реактивного двигателя газы получают импульс. Такой же по модулю импульс приобретает ракета.
Для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой, поэтому реактивное движение позволяет телу двигаться в безвоздушном пространстве.

Реактивные двигатели
Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Используются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолеты оснащены воздушно-ракетными двигателями.
Реактивные двигатели делятся на два класса:

  • ракетные;
  • воздушно-реактивные.

В ракетных двигателях топливо и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках.

Ракетный двигатель на твердом топливе
При горении топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Сила давления на переднюю стенку камеры больше, чем на заднюю, где находится сопло. Выходящие через сопло газы не встречают на своем пути стенку, на которую могли бы оказать давление. В результате появляется сила, толкающая ракету вперед.

Сопло – суженная часть камеры, служит для увеличения скорости истечения продуктов сгорания, что, в свою очередь, повышает реактивную силу. Сужение струи газа вызывает увеличение его скорости, так как при этом через меньшее поперечное сечение в единицу времени должна пройти такая же масса газа, что и при большем поперечном сечении.

Ракетный двигатель на жидком топливе

В ракетных двигателях на жидком топливе в качестве горючего используют керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя – азотную кислоту, жидкий кислород, перекись водорода и пр.
Горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания, где температура достигает 3000 0С и давление до 50 атм. В остальном работает так же, как и двигатель на твердом топливе.

Воздушно-реактивный двигатель

В носовой части находится компрессор, засасывающий и сжижающий воздух, который затем поступает в камеру сгорания. Жидкое горючее (керосин) попадает в камеру сгорания с помощью специальных форсунок. Раскаленные газы выходят через сопло, вращают газовую турбину, приводящую в движение компрессор.
Основное отличие воздушно-реактивных двигателей от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.

Алгоритм применения закона сохранения импульса к решению задач:

  1. Запишите краткое условие задачи.
  2. Определите характер движения и взаимодействия тел.
  3. Сделайте рисунок, на котором укажите направление векторов скоростей тел до и после взаимодействия.
  4. Выберите инерциальную систему отсчета с удобным для нахождения проекций векторов направлением координатных осей.
  5. Запишите закон сохранения импульса в векторной форме.
  6. Спроецируйте его на выбранные координатные оси (сколько осей, столько и уравнений в системе).
  7. Решите полученную систему уравнений относительно неизвестных величин.
  8. Выполните действия единицами измерения величин.
  9. Запишите ответ.

Работа силы

Механическая работа – это скалярная векторная величина, равная произведению модулей вектора силы, действующей на тело, вектора перемещения и косинуса угла между этими векторами.

Обозначение – ​ ( A ) ​, единицы измерения – Дж (Джоуль).

1 Дж – это работа, которую совершает сила в 1 Н на пути в 1 м:

Механическая работа совершается, если под действием некоторой силы, направленной не перпендикулярно, тело перемещается на некоторое расстояние.

Зависимость механической работы от угла ​ ( alpha ) ​


( alpha=180^,, cosalpha=-1,, A=-FS,,A ​

Геометрический смысл механической работы

На графике зависимости ​ ( F=F(S) ) ​ работа силы численно равна площади фигуры, ограниченной графиком, осью перемещения и прямыми, параллельными оси силы.

Формулы для вычисления работы различных сил

Работа силы тяжести:

Работа силы упругости:

Коэффициент полезного действия механизма (КПД) — это физическая величина, равная отношению полезной работы, совершенной механизмом, ко всей затраченной при этом работе.
Обозначение – ​ ( eta ) ​, единицы измерения – %.

​ ( A_> ) ​ – полезная работа – это та работа, которую нужно сделать;
​ ( A_> ) – затраченная работа – это та работа, что приходится делать на самом деле.

Важно!
КПД любого механизма не может быть больше 100%.

Мощность

Мощность – это количественная мера быстроты совершения работы.

Обозначение – ​ ( N ) ​, единицы измерения – Вт (Ватт).
Мощность равна отношению работы к времени, за которое она была совершена: .

1 Вт – это мощность, при которой за 1 с совершается работа в 1 Дж:

1 л. с. (лошадиная сила) = 735 Вт.

Связь между мощностью и скоростью равномерного движения:

Таким образом, мощность равна произведению модуля вектора силы на модуль вектора скорости и на косинус угла между направлениями этих векторов.

Важно!
Если интервал времени стремится к нулю, то выражение представляет собой мгновенную мощность, определяемую через мгновенную скорость.

Работа как мера изменения энергии

Если система тел может совершать работу, то она обладает энергией.

Работа и изменение кинетической энергии (теорема о кинетической энергии)

Если под действием силы тело совершило перемещение и вследствие этого его скорость изменилась, то работа силы равна изменению кинетической энергии.
Силы, работа которых не зависит от формы траектории, называются консервативными.

Работа и изменение потенциальной энергии тела, поднятого над землей

Работа силы тяжести равна изменению потенциальной энергии, взятому с противоположным знаком.

Работа и изменение потенциальной энергии упруго деформированного тела

Работа силы упругости равна изменению потенциальной энергии, взятому с противоположным знаком.

Кинетическая энергия

Кинетическая энергия – это энергия, которой обладает тело вследствие своего движения.

Обозначение – ​ ( W_k (E_k) ) ​, единицы измерения – Дж.

Кинетическая энергия равна половине произведения массы тела на квадрат его скорости:

Важно!
Так как кинетическая энергия отдельного тела определяется его массой и скоростью, то она не зависит от того, взаимодействует ли это тело с другими телами или нет. Значение кинетической энергии зависит от выбора системы отсчета, как и значение скорости. Кинетическая энергия системы тел равна сумме кинетических энергий отдельных тел, входящих в эту систему.

Потенциальная энергия

Потенциальная энергия – это энергия взаимодействия тел или частей одного и того же тела.

Обозначение – ​ ( W_p (E_p) ) ​, единицы измерения – Дж.

Потенциальная энергия тела, поднятого на некоторую высоту над землей, равна произведению массы тела, ускорения свободного падения и высоты, на которой он находится:

Потенциальная энергия упруго деформированного тела равна половине произведения жесткости на квадрат удлинения:

Важно!
Величина потенциальной энергии зависит от выбора нулевого уровня. Нулевым называется уровень, на котором потенциальная энергия равна нулю. Нулевой уровень выбирается произвольно, исходя из удобства решения задачи.

Закон сохранения механической энергии

Полная механическая энергия – это энергия, равная сумме кинетической и потенциальной энергий.

Обозначение – ​ ( W (E) ) ​, единицы измерения – Дж.

Закон сохранения механической энергии
В замкнутой системе тел, между которыми действуют только консервативные силы, механическая энергия сохраняется, т. е. не изменяется с течением времени:

Если между телами системы действуют кроме сил тяготения и упругости другие силы, например сила трения или сопротивления, действие которых приводит к превращению механической энергии в тепловую, то в такой системе тел закон сохранения механической энергии не выполняется.

Важно!
В случае, если кроме консервативных сил (тяжести, упругости, тяготения) существуют еще и неконсервативные силы, например сила трения, а также внешние силы, то

Теорема о кинетической энергии справедлива для сил любой природы:

Если на систему тел действуют неконсервативные и внешние силы, то изменение полной энергии равно сумме работ неконсервативных и внешних сил.

Закон сохранения и превращения энергии
Энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой или передается от одного тела к другому.

Закон cохранения импульса

О чем эта статья:

9 класс, 10 класс, ЕГЭ/ОГЭ

Импульс: что это такое

Как-то раз Рене Декарт (это который придумал ту самую декартову систему координат) решил, что каждый раз считать силу, чтобы описать процессы — как-то лень и сложно.

Для этого нужно ускорение, а оно не всегда очевидно. Тогда он придумал такую величину, как импульс. Импульс можно охарактеризовать, как количество движения — это произведение массы на скорость.

Импульс тела

→ →
p = mv

p — импульс тела [кг*м/с]

m — масса тела [кг]

Закон сохранения импульса

В физике и правда ничего не исчезает и не появляется из ниоткуда. Импульс — не исключение. В замкнутой изолированной системе (это та, в которой тела взаимодействуют только друг с другом) закон сохранения импульса звучит так:

Закон сохранения импульса

Векторная сумма импульсов тел в замкнутой системе постоянна

А выглядит — вот так:

Закон сохранения импульса

→ → →
p1 + p2 + … + pn = const

p — импульс тела [кг*м/с]

Простая задачка

Мальчик массой m = 45 кг плыл на лодке массой M = 270 кг в озере и решил искупаться. Остановил лодку (совсем остановил, чтобы она не двигалась) и спрыгнул с нее с горизонтально направленной скоростью 3 м/с. С какой скоростью станет двигаться лодка?

Решение:

Запишем закон сохранения импульса для данного процесса.

p0 — это импульс системы мальчик + лодка до того, как мальчик спрыгнул,

p1 — это импульс мальчика после прыжка,

p2 — это импульс лодки после прыжка.

Изобразим на рисунке, что происходило до и после прыжка.

Если мы спроецируем импульсы на ось х, то закон сохранения импульса примет вид
0 = p1 — p2
p1 = p2

Подставим формулу импульса.
mV1 = MV2

Выразим скорость лодки V2:
V2 = mV1/M

Подставим значения:
V2 = 45*3/270 = 3/6 = ½ = 0,5 м/с

Ответ: скорость лодки после прыжка равна 0,5 м/с

Задачка посложнее

Тело массы m1 = 800 г движется со скоростью v1 = 3 м/с по гладкой горизонталь- ной поверхности. Навстречу ему движется тело массы m2 = 200 г со скоростью v2 = 13 м/с. Происходит абсолютно неупругий удар (тела слипаются). Найти скорость тел после удара.

Решение: Для данной системы выполняется закон сохранения импульса:

Импульс системы до удара — это сумма импульсов тел, а после удара — импульс «получившегося» в результате удара тела.

Спроецируем импульсы на ось х:

После неупругого удара получилось одно тело массы m1 + m2, которое движется с искомой скоростью:

m1v1 — mv2 = (m1 + m2) v

Отсюда находим скорость тела, образовавшегося после удара:

v = (m1v1 — mv2)/(m1 + m2)

Переводим массу в килограммы и подставляем значения:

v = (0,8·3−0,2·13)/(0,8 + 0,2) = 2,4 — 2,6 = -2,6 м/с

В результате мы получили отрицательное значение скорости. Это значит, что в самом начале на рисунке мы направили скорость после удара неправильно.

Знак минус указывает на то, что слипшиеся тела двигаются в сторону, противоположную оси X. Это никак не влияет на значение получившееся значение.

Ответ: скорость системы тел после соударения равна v = 0,2 м/с.

Второй закон Ньютона в импульсной форме

Второй закон Ньютона в импульсной форме можно получить следующим образом. Пусть для определенности векторы скоростей тела и вектор силы направлены вдоль одной прямой линии, т. е. движение прямолинейное.

Запишем второй закон Ньютона, спроецированный на ось х, сонаправленную с направлением движения и ускорением:

Применим выражение для ускорения

В этих уравнениях слева находится величина a . Так как левые части уравнений равны, можно приравнять правые их части

Полученное выражение является пропорцией. Применив основное свойство пропорции, получим такое выражение:

В правой части находится Δv =v —v0 — это разница между конечной и начальной скоростью.

Преобразуем правую часть

Раскрыв скобки, получим

Заменим произведение массы и скорости на импульс:

То есть, вектор Δv⋅m – это вектор Δp.

Тогда второй закон Ньютона в импульсной форме запишем так

Вернемся к векторной форме, чтобы данное выражение было справедливо для любого направления вектора ускорения.

Задачка про белку отлично описывает смысл второго закона Ньютона в импульсной форме

Белка с полными лапками орехов сидит на гладком горизонтальном столе. И вот кто-то бесцеремонно толкает ее к краю стола. Белка понимает законы Ньютона и предотвращает падение. Но как?

Решение:

Чтобы к белке приложить силу, которая будет толкать белку в обратном направлении от края стола, нужно создать соответствующий импульс (вот и второй закон Ньютона в импульсной форме подъехал).

Ну, а чтобы создать импульс, белка может выкинуть орехи в сторону направления движения — тогда по закону сохранения импульса ее собственный импульс будет направлен против направления скорости орехов.

Реактивное движение

В основе движения ракет, салютов и некоторых живых существ: кальмаров, осьминогов, каракатиц и медуз — лежит закон сохранения импульса. В этих случаях движение тела возникает из-за отделения какой-либо его части. Такое движение называется реактивным.

Яркий пример реактивного движения в технике — движение ракеты, когда из нее истекает струя горючего газа, которая образуется при сгорании топлива.

Сила, с которой ракета действует на газы, равна по модулю и противоположна по направлению силе, с которой газы отталкивают от себя ракету:

Сила F2 называется реактивной. Это та сила, которая возникает в процессе отделения части тела. Особенностью реактивной силы является то, что она возникает без взаимодействия с внешними телами.

Закон сохранения импульса позволяет оценить скорость ракеты.

mг vг = mр vр,
где mг — это масса горючего,

vг — скорость горючего,

mр — масса ракеты,

vр — скорость ракеты.

Отсюда можно выразить скорость ракеты:

Скорость ракеты при реактивном движении

vр = mг vг / mр
mг — это масса горючего [кг]

vг — скорость горючего [м/с]

mр — масса ракеты [кг]

v р — скорость ракеты [м/с]

Эта формула справедлива для случая мгновенного сгорания топлива. Мгновенное сгорание — это теоретическая модель. В реальной жизни топливо сгорает постепенно, так как мгновенное сгорание приводит к взрыву.

Ссылка на основную публикацию