Напряженность электрического поля – понятие, формула, единица измерения и значение

ЛЕКЦИЯ №4

“Поле” сдашь –
студентом будешь.
(народная примета)

1. Понятие напряженности.

В опыте Милликена (см.лк.№2 п.12) мы встретились с величиной , с которой также знакомы по школьному курсу физики. Настала пора уточнить, что это такое.

Пусть в пространстве имеется некоторое расположение зарядов (рис.4.1). Нас интересует, как они будут действовать на пробный заряд q0. По принципу суперпозиции

(4.1)

Поделим на величину пробного заряда.

(4.2)

Выражение справа зависит только от исходного расположения зарядов и от положения рассматриваемой точки.

def:Физическая величина, являющаяся отношением силы, действующей со стороны электрического поля на пробный заряд, к величине этого заряда, называется напряженностью электрического поля. (4.3)

Здесь нам необходима определенная осторожность. Если мы введем пробный заряд, то исходные заряды могут прийти в движение, и изменить напряженность. Предел q ® 0 также не очень хорош, так как существует минимальный заряд |e|. Поэтому лучше исходить из следующего положения:

def:Напряженность – это векторная функция зарядов-источников электрического поля, которая определяется следующим образом (4.4)

В этом случае трудности снимаются, и нет необходимости упоминать о пробном заряде и о неподвижности.

2. Единица измерения напряженности.

Из определения напряженности очевидно, что

Однако в SI чаще используют другую единицу (будет разъяснено в лекции №7 п.3).

def:1 В/м – единица SI напряженности электрического поля, равная напряженности однородного электрического поля, при которой между точками, находящимися на расстоянии 1 м вдоль линии напряженности поля, создается разность потенциалов 1 Вольт.

3. Принцип суперпозиции.

Из определения (4.4) ясно, что в вакууме напряженность, как и сила, подчиняется принципу суперпозиции.

def:Напряженность поля в точке пространства равна сумме напряженностей полей, создаваемых отдельными точечными зарядами. (4.5)

4. Напряженность поля заряженного тела.

Ясно, что для определения напряженности, создаваемой реальными заряженными телами необходимо мысленно разбить их на столь малые заряды, чтобы их можно было считать точечными, а потом грамотно сложить (проинтегрировать).

Пусть заряд распределен по некоторому телу объема V’. Тогда напряженность поля в точке М равна

(4.6)

где интегрирование выполняется по объему заряженного тела. Если плотность заряда , то (4.7)

5. Напряженность поля точечного заряда.

Используя предыдущую формулу и плотность точечного заряда ( лк.№2,п.10), имеем (рис.4.3)

(4.8)

Если начало системы отсчета выбрать там, где находится точечный заряд, т.е. (см. рис.4.3), то

(4.9)

или в скалярной форме

(4.10)

Зависимость E(r) достаточно проста и представлена на рис.4.4. Расходимость в нуле не должна пугать, так как точечный заряд – это идеализация. В природе не существует зарядов в нулевом объеме, а любое распределение зарядов конечных размеров, как мы увидим ниже, не имеет особенностей.

6. Понятие электрического поля.

Теперь несколько замечаний об электрическом поле. На вопрос о том, что такое электрическое поле, реально ли оно или это некий числовой коэффициент, ответить очень трудно. “Есть вещи, которые вы спокойно можете объяснить два раза, не рискуя, что кто-нибудь поймет, о чем вы говорите”, – считала Сова в сказке о Винни-Пухе. К понятию поля мы будем возвращаться неоднократно. Пока речь идет об электростатическом поле. А ведь есть еще магнитное и электрическое вихревое, и даже электромагнитное.

Понятие “электрическое поле” имеет смысл. Оно сообщает пространству локальное свойство, а именно: если нам известно значение поля, то мы знаем без дальнейших рассуждений, что случится с любыми зарядами в этой точке, и для этого нам совсем не нужно знать, как это поле было создано. Напряженность – это количественная характеристика поля.

7. Графическое представление поля.

Чтобы наглядно представить себе поле, мы можем с каждой точкой пространства связать вектор напряженности, длину которого рисовать в соответствии с числовым значением (рис.4.5а и рис.4.5.б)

Другой способ – это изображение линий напряженности или силовых линий, касательные к которым в любой точке совпадают с направлением поля в этой точке. Эти линии являются гладкими и непрерывными, за исключением таких особенностей, как заряд. Густота линий выбирается таким образом, чтобы количество линий, пронизывающих единицу поверхности перпендикулярной к линиям площадки было пропорционально Е. Тогда по картине линий напряженности, можно судить о направлении и величине Е. Эти линии начинаются на положительных, а заканчиваются на отрицательных зарядах (или на бесконечности) и нигде не пересекаются. На рис.4.6 представлены линии напряженности для разноименных (слева) и одноименных (справа) зарядов.

рис.4.6

Если эту картину привести во вращение вокруг оси, соединяющей заряды, то получим объемную картину распределения поля.

Для зарядов разной величины картина может выглядеть весьма причудливым образом (рис.4.7).

Линии напряженности можно воспроизвести и в эксперименте. С этой целью в сосуд с плоским дном наливают какую-нибудь изолирующую жидкость, (вазелин, касторовое масло) в которой, по возможности равномерно, распределены кристаллики хинина, манная крупа или вообще какие-нибудь небольшие тельца удлиненной формы. Погрузив в такую жидкость два электрода, можно увидеть, как эти частицы, наэлектризовавшись и притянувшись друг к другу, образуют собою кривые линии (рис.4.8) как раз той же самой формы, которая была рассчитана теоретическим путем. Мелкие частицы в поле выстраиваются вдоль силовых линий. (Почему? Ведь поле есть в любой точке ?!)

8. О поле для особо любопытных (можно не читать).

def:Физическое поле – особая форма материи, физическая система с бесконечно большим числом степеней свободы, которая осуществляет взаимодействие между частицами, но может существовать и без частиц.

Описание его производится с помощью нескольких непрерывных функций, зависящих от положения в пространстве-времени. Электромагнитное поле описывается с помощью скалярного и векторного потенциалов, производные от которых дают электрическую и магнитную напряженности. Можно составить выражение для действия и с помощью принципа наименьшего действия получить дифференциальные уравнения, определяющие поля. Значения функций в точках можно считать обобщенными координатами, отсюда бесконечность степеней свободы. Если еще вспомнить, что поле имеет частицы-переносчики взаимодействий, то следует переходить к квантово-операторной теории поля.

Если вы ничего не поняли – не расстраивайтесь. Читайте дальше.

9. Напряжённость поля равномерно заряженной полусферы.

В качестве примера вычислим напряжённость поля в центре полусферы радиуса R, если по поверхности этой сферы равномерно распределён заряд q. Будем исходить из формулы (4.6). Учитывая, что заданное распределение заряда обладает сферической симметрией, вычисление удобно провести в сферической системе координат, выбрав её начало в центре сферы. При этом поверхностная плотность заряда, а элемент площади поверхности сферы, и, следовательно, формула (4.6) записывается в данном случае в виде:

(4.11)

Разложим по ортам декартовой системы координат, чтобы показать явную зависимость его от j и q , , и подставим в (4.11):

(4.12)

Учитывая, что уже не зависят от j и q , можно провести вычисление интеграла в (4.12), представляя его в виде суммы трёх интегралов. При этом, как легко видеть, при выполнении сначала интегрирования по j , интегралы от первого и второго слагаемых обращаются в ноль, и остаётся только интеграл от третьего слагаемого, который легко вычисляется:

Электрическое поле: основные понятия

Электрические заряды не воздействуют непосредственно друг на друга. Согласно современным представлениям, заряженные тела взаимодействуют посредством силового поля, которое создают вокруг себя.

Это силовое поле воздействует на заряженные тела с некоторой силой. Исследовать электрическое поле, которое окружает тело, несущее заряд, можно с помощью пробного заряда, величина которого незначительна. Особенностью электрического поля точечного заряда является тот факт, что оно не производит заметного перераспределения исследуемых зарядов.

Понятие напряженности электрического поля

Напряженность электрического поля – это силовая характеристика, которая используется для количественного определения электрического поля.

Второе значение термина – физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда.

Напряженность электрического поля можно задать формулой:

Напряжение электрического поля является векторной величиной. Направление вектора E → совпадает с направлением силы, которая воздействует на положительный пробный заряд в пространстве.

Напряженность электрического поля

Какое поле называют электростатическим?

Электростатическое поле – это электрическое поле, которое окружает неподвижные и не меняющиеся со временем заряды.

Очень часто в контексте темы электростатическое поле будет именоваться электрическим для краткости.

Электрическое поле может быть создано сразу несколькими заряженными телами. Такое поле также можно исследовать с помощью пробного заряда. В этом случае мы будем оценивать результирующую силу, которая будет равна геометрической сумме сил каждого из заряженных тем в отдельности.

Напряженность электрического поля, которая создается в определенной точке пространства системой зарядов, будет равна векторной сумме напряженностей электрических полей:

Электрическое поле подчиняется принципу суперпозиции.

Согласно формуле, напряженность электростатического поля, которое создается точечным зарядом Q на расстоянии r от него, в соответствии с законом Кулона, будет равна по модулю:

E = 1 4 πε 0 · Q r 2 .

Это поле называется кулоновским.

В кулоновском поле направление вектора E ⇀ зависит от знака заряда Q : если Q > 0 , то вектор E ⇀ направлен по радиусу от заряда, если Q 0 , то вектор E ⇀ направлен к заряду.

Обратимся к иллюстрации. На рисунке для большей наглядности мы используем силовые линии электрического поля. Они проходят таким образом, чтобы направление вектора E ⇀ в каждой из точек пространства совпадало с направлением касательной к силовой линии. Густота силовых линий соответствует модулю вектора напряженности поля.

Рисунок 1 . 2 . 1 . Силовые линии электрического поля.

Мы можем использовать как положительные, так и отрицательные точечные заряды. Оба эти случая мы изобразили на рисунке. Электростатическое поле, которое создается системой зарядов, мы можем представить как суперпозицию кулоновских полей точечных зарядов. В связи с этим мы можем рассматривать поля точечных зарядов как элементарные структурные единицы любого электрического поля.

Рисунок 1 . 2 . 2 . Силовые линии кулоновских полей.

Кулоновское поле точечного заряда Q удобно записать в векторной форме. Для этого нужно провести радиус-вектор r → от заряда Q к точке наблюдения. Тогда при Q > 0 вектор E → параллелен r → , а при Q 0 вектор E → антипараллелен r → .

Следовательно можно записать:

E → = 1 4 π ε 0 · Q r 3 r → ,

где r – модуль радиус-вектора r → .

По заданному распределению зарядов можно определить электрическое поле E → . Такие задачи часто встречаются в таком разделе физики как электростатика. Рассмотрим пример такой задачи.

Предположим, что нам нужно найти электрическое поле длинной однородно заряженной нити на расстоянии R от нее. Для большей наглядности мы привели схему на рисунке ниже.

Рисунок 1 . 2 . 3 . Электрическое поле заряженной нити.

Поле в точке наблюдения P может быть представлено в виде суперпозиции кулоновских полей, создаваемых малыми элементами Δ x нити, с зарядом τ Δ x , где τ – заряд нити на единицу длины. Задача сводится к суммированию (интегрированию) элементарных полей ∆ E → . Результирующее поле оказывается равным

Вектор E → везде направлен по радиусу R → . Это следует из симметрии задачи.

Даже в таком простом примере вычисления могут быть достаточно громоздкими. Упростить математические расчеты позволяет теорема Гаусса, которая выражает фундаментальное свойство электрического поля.

Рисунок 1 . 2 . 4 . Модель электрического поля точечных зарядов.

Рисунок 1 . 2 . 5 . Модель движения заряда в электрическом поле.

Понятие о диполях

Электрический диполь – это система из двух одинаковых по модулю зарядов, которые отличаются знаками и расположены на некотором расстоянии друг от друга.

Эта система может послужить нам хорошим примером применения принципа суперпозиции полей, а также электрической моделью многих молекул.

Рисунок 1 . 2 . 6 . Силовые линии поля электрического диполя E → = E 1 → + E 2 → .

Дипольный момент p → является одной из наиболее важных характеристик электрического диполя:

где l → – вектор, направленный от отрицательного заряда к положительному, модуль l → = l .

Электрическим дипольным моментом обладает, например, нейтральная молекула воды ( H 2 O ) , так как центры двух атомов водорода располагаются не на одной прямой с центром атома кислорода, а под углом 105 ° . Дипольный момент молекулы воды p = 6 , 2 · 10 – 30 К л · м .

Рисунок 1 . 2 . 7 . Дипольный момент молекулы воды.

Выводы всех формул по электростатике

  • Электростатика как раздел электродинамики
    • Основные понятия по теме в физике
  • Закон Кулона
  • Электрический заряд и его свойства
  • Формулы с пояснениями, вывод

Электростатика как раздел электродинамики

Электростатика является разделом учения об электричестве, задачей которого является исследование неподвижных электрических зарядов.

С давних времен известно, что определенные материалы – такие, как янтарь, – могут притягивать легкие предметы (к примеру, пух, пыль, кусочки бумаги). Возникновение электростатических явлений, главным образом, обусловлено взаимодействием электрических зарядов друг с другом. Сила такого взаимодействия описана законом Кулона.

Несмотря на то, что электростатические силы кажутся слабыми, в некоторых случаях они превосходят силу гравитации. Например, протон и электрон в атоме водорода взаимодействуют с силой, которая на 36 порядков больше действующей между ними гравитационной силы.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Существует масса примеров электростатических явлений, включая простое притяжение воздушного шарика к шерстяному свитеру, притяжение бумаги и тонера в лазерных принтерах, спонтанное воспламенение зернохранилища как результат электризации зерна.

Основные понятия по теме в физике

Электрический заряд – физическая величина, характеризующая свойство тел вступать в электрическое взаимодействие.

Электрический заряд обозначают Q и выражают в Кулонах [Кл]. Заряды, обладающие одинаковым знаком, отталкиваются друг от друга, а разноименные заряды притягиваются.

Элементарный заряд – минимальная порция заряда, способная передаваться от одного тела к другому.

Примерами элементарных зарядов являются протон и электрон. Величина обозначается, как:

Электрическое поле – непрерывный в пространстве материальный объект, который формируется любым электрическим зарядом и проявляется в воздействии на другие заряды.

Проводник – материал, по которому заряд может свободно двигаться от одного тела к другому.

Диэлектрик – материал, по которому электрический заряд в обычных условиях не перемещается.

Закон сохранения электрического заряда: в условиях замкнутой системы алгебраическая (с учетом знаков +/−) общая сумма зарядов не меняется.

Формула закона сохранения электрического заряда:

Закон Кулона

Закон Кулона позволяет количественно описать процесс, при котором взаимодействуют заряженные тела. Это фундаментальный закон – утверждение было доказано экспериментальным путем, а не является следствием природных закономерностей.

Закон Кулона справедлив в том случае, когда точечные заряды неподвижны и находятся в вакууме. Понятие точечного заряда является условным, так как подобные частицы отсутствуют в действительности. Однако точечными можно считать такие заряды, размеры которых существенно меньше, чем расстояние между ними.

Сила, с которой взаимодействуют заряды в воздухе, практически не отличается от силы их взаимодействия в вакууме. В первом случае сила слабее менее, чем на одну тысячную. Электрический заряд является физической величиной и характеризует способность частиц и тел вступать в электромагнитные силовые взаимодействия.

Первым закон взаимодействия зарядов, находящихся в состоянии покоя, открыл французский физик Ш. Кулон в 1785 году. Опытным путем ученый измерял взаимодействие между шариками с размерами намного меньше, чем расстояние между ними.

Закон Кулона: Сила, с которой взаимодействуют два неподвижных точечных электрических заряда в вакууме, прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними. Сила направлена вдоль прямой, соединяющей заряды, и является силой притяжения, если заряды разноименные, и силой отталкивания, если заряды одноименные.

Модули зарядов обозначают:

(left| q_1right| left| q_2 right|)

Таким образом, запись закона Кулона будет иметь следующий вид: (F = k cdot dfrac ) Коэффициент пропорциональности определяется выбором системы единиц:

Полная формула закона Кулона:

(q_1 q_2) — определяют электрический заряд тела;

r — расстояние, на которое удалены заряды;

(varepsilon_0 = 8,85*10^ <-12>) — электрическая постоянная;

(varepsilon) — диэлектрическая проницаемость среды;

(k = 9*10^9) — коэффициент пропорциональности в законе Кулона.

Согласно третьему закона Ньютона:

Данные силы взаимодействия представляют собой силы отталкивания в том случае, когда заряды имеют одинаковые знаки, и являются силами притяжения при разных знаках зарядов. Для обозначения электрического заряда, как правило, используют буквы q или Q.

Исходя из совокупности данных, полученных экспериментальным путем, можно сделать следующие выводы:

  1. Электрические заряды бывают двух типов, которые условно называют отрицательными и положительными.
  2. Заряды обладают способностью передаваться (к примеру, в процессе непосредственного контакта) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемым параметром данного тела. Одно и то же тело при разных условиях может обладать неодинаковым зарядом.
  3. Заряды с одинаковым знаком отталкиваются, а с разными – притягиваются. Таким образом проявляется принципиальная разница между электромагнитными и гравитационными силами. Гравитацией всегда является сила притяжения.

Взаимодействие неподвижных электрических зарядов является электростатическим или кулоновским взаимодействием. Электростатика является отдельным разделом электродинамики, задача которого заключается в изучении кулоновского взаимодействия.

Закон Кулона применим в случае точечных заряженных тел. На практике закономерность выполняется в том случае, когда размеры заряженных тел много меньше, чем расстояние между ними. Условия выполнения закона Кулона:

  • точечность зарядов;
  • неподвижность зарядов;
  • взаимодействие зарядов в вакууме.

В международной системе СИ заряд измеряют в Кулонах (Кл).

Кулон – заряд, который проходит за 1 секунду через поперечное сечение проводника при силе тока 1 А.

Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Электрический заряд и его свойства

Электрическим зарядом называют физическую величину, которая характеризует свойство частиц или тел вступать в электромагнитные взаимодействия. Заряд обозначают, как q или Q, и измеряют в Кл. Свободный заряд в 1 Кл представляет собой гигантскую величину заряда, которую практически невозможно встретить в природе. Обычно, в процессе изучения, можно встретить заряды, исчисляемые в микрокулонах, нанокулонах, пикокулонах. Свойства электрического заряда:

  • электрический заряд является видом материи;
  • на электрический заряд не влияет движение частицы и ее скорость;
  • заряды обладают способностью перемещаться (например, в процессе непосредственного контакта) от одного тела к другому, не являются неотъемлемой характеристикой тела;
  • электрические заряды бывают отрицательными и положительными, что соответствует их условным типам;
  • заряды взаимодействуют друг с другом, при этом одноименные заряды притягиваются, а разноименные – отталкиваются;
  • силы взаимодействия зарядов представляют собой центральные силы, то есть лежат на одной прямой, которая соединяет центры этих зарядов;
  • минимально возможный по модулю заряд называют элементарным, (e= 1,6*10^<-19>.)

Электрический заряд для любого тела является кратной элементарному заряду величиной:

где N – является целым числом.

Можно отметить, что не существует заряда, который бы составлял, к примеру, 0,5е; 1,7е; 22,7е и так далее. Физические величины, принимающие лишь дискретный ряд значений, называются квантованными. Элементарный заряд e является квантом, то есть минимальной порцией электрического заряда.

Согласно закону сохранения электрического заряда, в замкнутой системе тел не могут появляться, либо исчезать заряды только с одним знаком. Формула закона сохранения электрического заряда:

Таким образом, когда тела обладают одинаковыми размерами и формами, содержат в себе заряды (q_1) и (q_2) , независимо от знака этих зарядов, при соприкосновении и обратном разведении каждое тело в итоге будет обладать следующим зарядом:

Современная наука полагает, что носителями зарядов являются элементарные частицы. Известно, что все тела состоят из атомов, которые включают в себя протоны с положительным зарядом, электроны с отрицательным зарядом и нейтральный частицы, называемые нейтронами. Из протонов и нейтронов состоят атомные ядра. Электронная оболочка атомов образована электронами.

Протон и электрон обладают одинаковыми по модулю электрическими зарядами, которые равны элементарному заряду е. Если атом нейтральный, то количество протонов в ядре соответствует числу электронов в оболочке. Данное число называют атомным номером.

Атом рассматриваемого вещества может лишиться одного или нескольких электронов либо приобрести лишний электрон. В этом случае нейтральный атом трансформируется в положительно или отрицательно заряженный ион.

Следует отметить, что ядро атома состоит из положительных протонов, в связи с этим их количество может увеличиться или уменьшиться только в процессе ядерной реакции. Известно, что электризация тел не сопровождается ядерными реакциями. Таким образом, при любых электрических явлениях количество протонов остается стабильным, может измениться лишь число электронов.

Можно сообщить телу отрицательный заряд, то есть передать ему лишние электроны. Сообщение телу положительного заряда подразумевает отнимание электронов, а не добавление протонов. Передача заряда от одного тела к другому осуществляется порциями, которые включают в себя целое число электронов.

В определенных случаях при решении задач можно встретить примеры распределения электрического заряда по какому-либо телу. Описать такое распределение можно с помощью специальных величин.

Линейная плотность заряда необходима, чтобы описать, каким образом заряд распределен по нити. Величина измеряется в Кл/м. Формула линейной плотности заряда:

где L – является длиной нити.

Поверхностная плотность заряда позволяет определить, как заряд распределен по поверхности тела. Величина измеряется в кулонах на квадратный метр. Формула поверхностной плотности заряда:

где S – площадь поверхности тела.

Объемную плотность заряда целесообразно применять для описания распределения заряда по объему тела. Величина измеряется в кулонах на м³. Формула объемной плотности заряда:

где V – это объем тела.

Формулы с пояснениями, вывод

В случае электрических зарядов действует принцип суперпозиции: результирующая сила, действующая на определенный заряд (q_<1>) со стороны нескольких зарядов (q_<2>. q_,) равна геометрической сумме, то есть векторной сумме сил (F_<12>+. F_<1n>) , которые действуют на данный заряд со стороны каждого из зарядов:

Заряженные частицы взаимодействуют друг с другом с конечной скоростью с помощью электрического поля. Данное утверждение является теорией близкодействия электрических зарядов.

Напряженность электрического поля является векторной величиной и равна отношению силы F (векторная величина), с которой поле действует на точечный заряд q (скалярная величина), к этому заряду (с учетом знака заряда).

Формула расчета напряженности:

Исходя из закона Кулона, можно определить напряженность электрического поля единичного точечного заряда Q, то есть на расстоянии r от него:

Принцип суперпозиции электрических полей состоит в том, что при создании заряженными частицами в определенной точке пространства электрических полей с напряженностями (E_<1>, E_<2>,…, E_) , результирующая напряженность электрического поля в данной точке равна векторной сумме отдельных напряженностей:

Заряд q в однородном электрическом поле напряженности Е обладает потенциальной энергией:

где d является расстоянием до плоскости с нулевой потенциальной энергией.

Потенциал электростатического поля в точке является отношением потенциальной энергии заряда в поле, к этому заряду, учитывая знак заряда.

Формула для расчета потенциала электростатического поля:

Потенциалом электростатического поля также называют работу, которая выполняется в процессе перемещения единичного положительного заряда из рассматриваемой точки в бесконечность.

Напряжение соответствует разности потенциалов между точками и определяется, как отношение работы поля при перемещении заряда из начального положения в конечное, к данному заряду, учитывая знак заряда:

В числовом выражении, но не по размерности, данная величина представляет собой работу, которую выполняет поле, перемещая единичный положительный заряд из одной точки в другую.

Однородное поле характеризуется наличием связи между разностью потенциалов и напряженностью:

где U является разностью потенциалов между точками, которые связывает вектор перемещения (Delta d) , совпадающий по направлению с вектором Е.

Электроемкостью пары проводников называют отношение заряда Q, который соответствует одному из проводников, к разности потенциалов U между этим проводником и соседним:

Конденсатор – система из пары проводников, называемых обкладками конденсатора, которые разделены диэлектрическим слоем с толщиной меньшей, чем размеры обкладок.

Формула напряженности плоского конденсатора:

Электроемкость плоского конденсатора:

Уравнение энергии, которой обладает заряженный конденсатор:

В современной технике практикуется использование электростатических эффектов. Например, чтобы качественно очистить воздух от частиц гари и пыли с помощью специальных электрических фильтров, равномерно распределять красящие составы благодаря краскопультам, распечатывать материалы в офисных установках (таких, как «Ксерокс»), производить наждачную бумагу.

Электростатическую защиту оснащают при помощи экранирующих проводников, что позволяет оградить от электрических полей электроизмерительные чувствительные устройства.

Конструкции в виде металлических сеток защищают любые огнеопасные объекты, включая склады с порохом, от внезапного удара молнии. Характеристика избыточных электрических зарядов определяется на поверхности проводников, а затем широко используется в приборе генератора Ван-дер-Граафа, который представляет собой устройство для получения сверхсильных электрических и магнитных полей.

Электростатика, как научная область, мало изучена. Ученые длительное время избегали данной темы из-за ее ограниченного применения в технике. Активное использование полимеров в промышленных масштабах послужило причиной поиска новых решений, позволяющих нейтрализовать постоянные и статические заряды.

Сегодня электростатика отличается многогранными и многочисленными сферами применения. Электростатические явления используют в технике и медицине, что делает направление перспективным для дальнейшего развития.

Теория и формулы электростатики — кратко о главном

Электрический заряд – это физическая величина, характеризующая способность частиц или тел вступать в электромагнитные взаимодействия. Электрический заряд обычно обозначается буквами q или Q. В системе СИ электрический заряд измеряется в Кулонах (Кл). Свободный заряд в 1 Кл – это гигантская величина заряда, практически не встречающаяся в природе. Как правило, Вам придется иметь дело с микрокулонами (1 мкКл = 10 –6 Кл), нанокулонами (1 нКл = 10 –9 Кл) и пикокулонами (1 пКл = 10 –12 Кл). Электрический заряд обладает следующими свойствами:

1. Электрический заряд является видом материи.

2. Электрический заряд не зависит от движения частицы и от ее скорости.

3. Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

4. Существует два рода электрических зарядов, условно названных положительными и отрицательными.

5. Все заряды взаимодействуют друг с другом. При этом одноименные заряды отталкиваются, разноименные – притягиваются. Силы взаимодействия зарядов являются центральными, то есть лежат на прямой, соединяющей центры зарядов.

6. Существует минимально возможный (по модулю) электрический заряд, называемый элементарным зарядом. Его значение:

e = 1,602177·10 –19 Кл ≈ 1,6·10 –19 Кл.

Электрический заряд любого тела всегда кратен элементарному заряду:

где: N – целое число. Обратите внимание, невозможно существование заряда, равного 0,5е; 1,7е; 22,7е и так далее. Физические величины, которые могут принимать только дискретный (не непрерывный) ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда.

7. Закон сохранения электрического заряда. В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака. Из закона сохранения заряда так же следует, если два тела одного размера и формы, обладающие зарядами q1 и q2 (совершенно не важно какого знака заряды), привести в соприкосновение, а затем обратно развести, то заряд каждого из тел станет равным:

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному (то есть минимально возможному) заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов, или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион. Обратите внимание, что положительные протоны входят в состав ядра атома, поэтому их число может изменяться только при ядерных реакциях. Очевидно, что при электризации тел ядерных реакций не происходит. Поэтому в любых электрических явлениях число протонов не меняется, изменяется только число электронов. Так, сообщение телу отрицательного заряда означает передачу ему лишних электронов. А сообщение положительного заряда, вопреки частой ошибке, означает не добавление протонов, а отнимание электронов. Заряд может передаваться от одного тела к другому только порциями, содержащими целое число электронов.

Иногда в задачах электрический заряд распределен по некоторому телу. Для описания этого распределения вводятся следующие величины:

1. Линейная плотность заряда. Используется для описания распределения заряда по нити:

где: L – длина нити. Измеряется в Кл/м.

2. Поверхностная плотность заряда. Используется для описания распределения заряда по поверхности тела:

где: S – площадь поверхности тела. Измеряется в Кл/м 2 .

3. Объемная плотность заряда. Используется для описания распределения заряда по объему тела:

где: V – объем тела. Измеряется в Кл/м 3 .

Обратите внимание на то, что масса электрона равна:

Закон Кулона

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь. На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных точечных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

где: ε – диэлектрическая проницаемость среды – безразмерная физическая величина, показывающая, во сколько раз сила электростатического взаимодействия в данной среде будет меньше, чем в вакууме (то есть во сколько раз среда ослабляет взаимодействие). Здесь k – коэффициент в законе Кулона, величина, определяющая численное значение силы взаимодействия зарядов. В системе СИ его значение принимается равным:

Силы взаимодействия точечных неподвижных зарядов подчиняются третьему закону Ньютона, и являются силами отталкивания друг от друга при одинаковых знаках зарядов и силами притяжения друг к другу при разных знаках. Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел, равномерно заряженных сфер и шаров. В этом случае за расстояния r берут расстояние между центрами сфер или шаров. На практике закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними. Коэффициент k в системе СИ иногда записывают в виде:

где: ε0 = 8,85∙10 –12 Ф/м – электрическая постоянная.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции: если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Запомните также два важных определения:

Проводники – вещества, содержащие свободные носители электрического заряда. Внутри проводника возможно свободное движение электронов – носителей заряда (по проводникам может протекать электрический ток). К проводникам относятся металлы, растворы и расплавы электролитов, ионизированные газы, плазма.

Диэлектрики (изоляторы) – вещества, в которых нет свободных носителей заряда. Свободное движение электронов внутри диэлектриков невозможно (по ним не может протекать электрический ток). Именно диэлектрики обладают некоторой не равной единице диэлектрической проницаемостью ε.

Для диэлектрической проницаемости вещества верно следующее (о том, что такое электрическое поле чуть ниже):

Электрическое поле и его напряженность

По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля – действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Электрическое поле, окружающее заряженное тело, можно исследовать с помощью так называемого пробного заряда – небольшого по величине точечного заряда, который не вносит заметного перераспределения исследуемых зарядов. Для количественного определения электрического поля вводится силовая характеристика – напряженность электрического поля E.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на пробный заряд, помещенный в данную точку поля, к величине этого заряда:

Напряженность электрического поля – векторная физическая величина. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд. Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим.

Для наглядного представления электрического поля используют силовые линии. Эти линии проводятся так, чтобы направление вектора напряженности в каждой точке совпадало с направлением касательной к силовой линии. Силовые линии обладают следующими свойствами.

  • Силовые линии электростатического поля никогда не пересекаются.
  • Силовые линии электростатического поля всегда направлены от положительных зарядов к отрицательным.
  • При изображении электрического поля с помощью силовых линий их густота должна быть пропорциональна модулю вектора напряженности поля.
  • Силовые линии начинаются на положительном заряде или бесконечности, а заканчиваются на отрицательном или бесконечности. Густота линий тем больше, чем больше напряжённость.
  • В данной точке пространства может проходить только одна силовая линия, т.к. напряжённость электрического поля в данной точке пространства задаётся однозначно.

Электрическое поле называют однородным, если вектор напряжённости одинаков во всех точках поля. Например, однородное поле создаёт плоский конденсатор – две пластины, заряженные равным по величине и противоположным по знаку зарядом, разделённые слоем диэлектрика, причём расстояние между пластинами много меньше размеров пластин.

Во всех точках однородного поля на заряд q, внесённый в однородное поле с напряжённостью E, действует одинаковая по величине и направлению сила, равная F = Eq. Причём, если заряд q положительный, то направление силы совпадает с направлением вектора напряжённости, а если заряд отрицательный, то вектора силы и напряжённости противоположно направлены.

Силовые линии кулоновских полей положительных и отрицательных точечных зарядов изображены на рисунке:

Принцип суперпозиции

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряжённостей электрических полей, создаваемых в той же точке зарядами в отдельности:

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции. В соответствии с законом Кулона, напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю:

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.

Основные формулы электростатики

Вы будете перенаправлены на Автор24

Электростатика – обширный раздел электродинамики, исследующий и описывающий покоящиеся в определенной системе электрически заряженные тела.

На практике выделяют два вида электростатических зарядов: положительные (стекло о шелк) и отрицательные (эбонит о шерсть). Элементарный заряд является минимальным зарядом ($e = 1,6 ∙10^< -19>$ Кл). Заряд любого физического тела кратен целому количеству элементарных зарядов: $q = Ne$.

Электризация материальных тел – перераспределение заряда между телами. Способы электризации: касание, трение и влияние.

Закон сохранения электрического положительного заряда – в замкнутой концепции алгебраическая сумма зарядов всех элементарных частиц остается стабильной и неизменной. $q_1 + q _2 + q _3 + …..+ q_n = const$. Пробный заряд в данном случае представляет собой точечный положительный заряд.

Закон Кулона

Указанный закон был установлен экспериментальным путем в 1785 году. Согласно этой теории, сила взаимодействия двух покоящихся точечных зарядов в среде всегда прямо пропорциональна произведению положительных модулей и обратно пропорционально квадрату общего расстояния между ними.

Электрическое поле представляет собой уникальный вид материи, который осуществляет взаимодействие между стабильными электрическими зарядами, формируется вокруг зарядов, воздействует только на заряды.

Рисунок 1. Закон Кулона. Автор24 — интернет-биржа студенческих работ

Такой процесс точечных неподвижных элементов полностью подчиняются третьему закону Ньютона, и считается результатом отталкивания друг от друга частиц при одинаковых силовых притяжениях друг к другу. Взаимосвязь стабильных электрических зарядов в электростатике называют кулоновским взаимодействием.

Готовые работы на аналогичную тему

Закон Кулона вполне справедлив и точен для заряженных материальных тел, равномерно заряженных шаров и сфер. В этом случае за расстояния в основном берут параметры центров пространств. На практике данный закон хорошо и быстро выполняется, если величины заряженных тел гораздо меньше расстояния между ними.

В электрическом поле также действуют проводники и диэлектрики.

Первые представляют содержащие свободные носители электромагнитного заряда вещества. Внутри проводника может возникнуть свободное движение электронов. К этим элементам относятся растворы, металлы и различные расплавы электролитов, идеальные газы и плазма.

Диэлектрики являются веществами, в которых не может быть свободных носителей электрического заряда. Свободное движение электронов внутри самих диэлектриков невозможно, так как по ним не протекает электрический ток. Именно эти физические частицы обладают не равной диэлектрической единице проницаемостью.

Силовые линии и электростатика

Силовые линии начальной напряженности электрического поля являются непрерывными линиями, касательные точки к которым в каждой среде, через которые они проходят, полностью совпадают с осью напряженности.

Основные характеристики силовых линий:

  • не пересекаются;
  • не замкнуты;
  • стабильны;
  • конечное направление совпадает с направлением вектора;
  • начало на $+ q$ или в бесконечности, конец на $– q$;
  • формируются вблизи зарядов (где больше напряжённость);
  • перпендикулярны поверхности основного проводника.

Разность электрических потенциалов или напряжение (Ф или $U$) — это величина потенциалов в начальной и конечной точках траектории положительного заряда. Чем меньше изменяется потенциал на отрезке пути, тем меньше в итоге напряженность поля.

Напряженность электрического поля всегда направлена в сторону уменьшения начального потенциала.

Рисунок 2. Потенциальная энергия системы электрических зарядов. Автор24 — интернет-биржа студенческих работ

Электроемкость характеризует способность любого проводника накапливать необходимый электрический заряд на собственной поверхности.

Данный параметр не зависит от электрического заряда, однако на него могут воздействовать геометрические размеры проводников, их формы, расположение и свойств среды между элементами.

Конденсатор является универсальным электротехническим устройством, которое помогает быстро накопить электрический заряд для отдачи его в цепь.

Электрическое поле и его напряженность

Рисунок 3. Электрическое поле. Автор24 — интернет-биржа студенческих работ

По современным представлениям ученых, электрические стабильные заряды не влияют друг на друга непосредственно. Каждое заряженное физическое тело в электростатике создает в окружающей среде электрическое поле. Этот процесс оказывает силовое воздействие на другие заряженные вещества. Главное свойство электрического поля заключается в действии на точечные заряды с некоторой силой. Таким образом, взаимодействие положительно заряженных частиц осуществляется через поля, которые окружают заряженные элементы.

Это явление возможно исследовать посредством, так называемого, пробного заряда – небольшого по размеру электрического заряда, который не вносит существенное перераспределения изучаемого зарядов. Для количественного выявления поля вводится силовая особенность – напряженность электрического поля.

Напряженностью называют физический показатель, который равен отношению силы, с которой поле воздействует на пробный заряд, размещенный в данной точке поля, к величине самого заряда.

Напряженность электрического поля представляет собой векторную физическую величину. Направление вектора в этом случае совпадает в каждой материальной точке окружающего пространства с направлением действующей на положительный заряд силы. Электрическое поле не меняющихся со временем и неподвижных элементов считается электростатическим.

Для понимания электрического поля применяют силовые линии, которые проводятся таким образом, чтобы направление главной оси напряженности в каждой системе совпадало с направлением касательной к точке.

Разность потенциалов в электростатике

Электростатическое поле включает одно важное свойство: работа сил всех движущихся частиц при перемещении точечного заряда из одной точки поля в другую не зависит от направления траектории, а определяется исключительно положением начальной и конечной линий и параметром заряда.

Результатом независимости работы от формы движения зарядов является следующее утверждение: функционал сил электростатического поля при преобразовании заряда по любой замкнутой траектории всегда равен нулю.

Рисунок 4. Потенциальность электростатического поля. Автор24 — интернет-биржа студенческих работ

Свойство потенциальности электростатического поля помогает ввести понятие потенциальной и внутренней энергии заряда. А физический параметр, равный соотношению потенциальной энергии в поле к величине этого заряда, называют постоянным потенциалом электрического поля.

Во многих сложных задачах электростатики при определении потенциалов за опорную материальную точку, где величина потенциальной энергии и самого потенциала обращаются в ноль, удобно использовать бесконечно удаленную точку. В этом случае значимость потенциала определяется так: потенциал электрического поля в любой точке пространства равен работе, которую выполняют внутренние силы при удалении положительного единичного заряда из данной системы в бесконечность.

Электростатика

Средняя оценка: 4.3

Всего получено оценок: 82.

Средняя оценка: 4.3

Всего получено оценок: 82.

В электродинамике большое значение играет движение зарядов. Описание покоящихся зарядов гораздо проще описания движущихся. Поэтому описание явлений, происходящих с покоящимися зарядами, изучается в отдельном разделе электродинамики – электростатике.

Электростатика как раздел электродинамики

В основе большей части явлений природы, знакомых человечеству, лежит взаимодействие, называемое электромагнитным. Лишь земное притяжение, океанские приливы и движение планет имеют в своей основе другое взаимодействие (гравитацию). В основе всех остальных процессов лежит электромагнетизм. Механика, теплоэнергетика, химия, биология – все это проявление различных сторон электромагнитного взаимодействия.

Электромагнетизм изучается в рамках электродинамики. Однако такая широкая сфера действия электромагнитного взаимодействия приводит к необходимости разбиения этой теории на более мелкие разделы. Одним из таких разделов является электростатика – описание явлений, происходящих с покоящимися заряженными телами.

Рис. 1. Электростатика как раздел электродинамики.

Если заряженные тела не движутся, то огромная часть особенностей электромагнитного взаимодействия не проявляется. В первую очередь это относится к магнитным явлениям. Описание только электрических взаимодействий короче, формулы электростатики проще, поэтому изучение электромагнетизма обычно начинают с электростатики.

Основные понятия электростатики

Электрическое поле и заряд

Центральным понятием электростатики является понятие электрического поля и заряда. Поле – это особое свойство материи, проявляющееся в том, что тела, находящиеся в нем, испытывают силовое влияние со стороны других тел. Интенсивность этого влияния может быть различна, и поэтому для ее измерения вводится понятие заряда. Чем больший заряд имеет тело, с тем большей силой оно участвует во взаимодействии с полем. Например, для гравитационного поля в качестве гравитационного заряда выступает масса тела. Чем она больше, тем больше силы гравитации между объектами, обладающими массой.

Точно так же, тела, обладающие электрическим зарядом, взаимодействуют с полем и друг с другом, причем тем сильнее, чем больше заряды.

Два вида электрических зарядов

Наиболее просто сообщить телу заряд можно с помощью трения. Многие тела при взаимном трении приобретают электрические свойства.

Но, в отличие от гравитации, где массы всегда притягиваются друг к другу, в электростатике существуют заряды двух сортов. Условно они названы положительным и отрицательным. Притяжение испытывают заряды разных знаков. Заряды одного знака отталкиваются.

Многие видели, как расческа при расчесывании начинает притягивать мелкие кусочки бумаги. Это происходит потому, что расческа от трения приобретает некоторый заряд. Приближение этого заряда к кусочкам бумаги приводит к тому, что внутри них происходит смещение заряженных частиц (поляризация). Одни частицы притягиваются к расческе, и смещаются ближе к ней. Другие – отталкиваются. Более близкие заряды притягиваются сильнее, чем далекие, равнодействующая сила притяжения оказывается больше, и бумажный кусочек притягивается.

Закон сохранения электрического заряда

Опыт показывает, что электризация тел не создает заряды в телах, а лишь перераспределяет их. Если тело в результате трения получило электрический заряд, то обязательно существует другое тело, которое тоже получило такой же по величине, но противоположный по знаку заряд (чаще всего, это второе тело, участвовавшее в трении). Данная особенность – это проявление одного из законов сохранения.

В изолированной системе алгебраическая сумма зарядов остается постоянной.

Закон сохранения заряда выполняется даже в случае, когда его носители (элементарные частицы) исчезают, превращаясь в совсем другие частицы. Например, свободный нейтрон, не имеющий заряда, может самопроизвольно превратиться в три совсем других частицы (протон, электрон и антинейтрино), две из которых обладают зарядом. Однако суммарный заряд этих трех частиц по-прежнему останется нулевым.

Рис. 3. Закон сохранения заряда.

Что мы узнали?

Электростатика – это раздел физики, изучающий явления, происходящие с покоящимися зарядами. Основными понятиями электростатики является понятие электрического поля и заряда. Это особые свойства материи, проявляющиеся в том, что тела, находящиеся в электрическом поле и имеющие электрический заряд, испытывают силовое влияние со стороны этого поля и других заряженных тел.

Основные формулы и методические рекомендации по решению задач на электростатику

Урок 1. Видеоуроки. Решение задач по физике. Электродинамика.

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока “Основные формулы и методические рекомендации по решению задач на электростатику”

«Решение задач — это практическое искусство,

подобно плаванию, или катанию на лыжах,

или игре на пианино: вы можете научиться этому,

только практикуясь. если вы захотите научиться

плавать, то вынуждены будете зайти в воду,

а если вы захотите стать человеком,

хорошо решающим задачи, вы вынуждены их решать»

Данная тема посвящена рассмотрению общих методов решения задач по физике, а также повторим основные формулы и величины электростатики – одного из разделов электродинамики.

В этом разделе будет рассматриваться всё, что связано с электродинамикой, а в конце курса будут рассмотрены колебания и волны. Напомним, что электродинамикой, в общем случае, называется наука, посвящённая решению любых задач, связанных с изучением электромагнитного поля, его взаимодействия с электрически заряженными телами, а также с телами, обладающими магнитными свойствами.

Известно, что электродинамика разбита на несколько разделов. В данном курсе будет рассмотрена, в первую очередь, электростатика. Электростатика изучает взаимодействие неподвижных электрических зарядов. Далее перейдём к изучению законов постоянного тока: здесь будут рассматриваться электрические цепи, а также различные характеристики электрического тока. Следующий раздел будет посвящен основам магнитостатики – то есть, изучению взаимодействия постоянных токов посредством создаваемых ими магнитных полей.

В последнем разделе будут рассмотрены решения задач на электромагнитную индукцию. Напомним, что электромагнитная индукция – это явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Рассмотрим методические рекомендации по решению физических задач. Конечно, не существует универсального способа решения любой задачи, поэтому дадим лишь самые общие рекомендации. Однако, следует заметить, что прежде чем решать задачи, необходимо изучить и понять теорию, относящуюся к данной теме.

Методические рекомендации по решению задач.

1) Внимательно прочесть условия задачи, мысленно представляя ситуацию, описанную в ней. Очень часто ученики делают ошибки из-за того, что не вникли в условие задачи. Для примера рассмотрим простую задачу: Точечный заряд, равный 300 мкКл, переместился из одной точки в другую, потенциал в которой ниже на 0,5 В. Найдите работу, совершенную электрическим полем, предполагая, что это поле однородно.

2) Записать условие задачи в кратком форме (то есть, записать «дано»). Также, необходимо уметь извлекать данные из литературных выражений: например, в задаче следует предположить, что поле однородно, то есть, модуль, и направление вектора напряжённости остаются постоянными в каждой точке поля. И, конечно, необходимо указать в «дано» искомую величину.

3) Перевести значения всех физических величин в СИ. Иногда, в этом нет необходимости, но, тем не менее, все вычисления должны производиться с величинами, имеющими соответствующие единицы измерения.

4) Сделать рисунок, чертеж или схему. На рисунке показать все векторные величины. Почти в любой задаче имеет смысл начертить вспомогательный рисунок.

5) Выяснить, какими физическими законами можно описать данную задачу. Если в закон входят векторные величины, то надо записать уравнение, выражающее закон в векторном виде.

6) Выбрать направления координатных осей и записать векторные соотношения в проекциях на оси координат в виде скалярных уравнений.

7) Оценить количество неизвестных физических величин, вошедших в уравнения и составить столько же уравнений, которые образуют систему уравнений. Решить полученную систему уравнений и выразить искомую величину в общем виде.

8) Проверить правильность решения с помощью обозначений единиц физических величин.

9) Подставить в общее решение числовые значения физических величин и произвести вычисления.

10) Оценить реальность полученного результата и записать ответ в единицах СИ или в тех единицах, которые заданы в условии задачи.

11) Записать ответ, обязательно указав единицы измерения величины, записанной вами в ответе. Иногда, полезно проверить, есть ли другие способы решения данной задачи.

q = 300 мкКл

Ответ: работа электрического поля составила 1,5 мкДж.

Основные формулы электростатики.

Сила взаимодействия двух точечных зарядов q1 и q2, находящихся на расстоянии r, где k = 9×10 9 Н×м 2 /Кл 2 – коэффициент пропорциональности, e – диэлектрическая проницаемость среды.

Напряжённость поля точечного заряда q на расстоянии r от заряда.

Принцип суперпозиции полей, где E1, E2, En – напряженность поля, создаваемого соответственно зарядами q1, q2, qn.

Потенциал точечного заряда q, где А – работа электрического поля по переносу заряда.

Разность потенциалов или электрическое напряжение между двумя точками.

Работа электрического поля по переносу заряда.

Электроёмкость плоского конденсатора

Потенциальная энергия заряженного конденсатора

Закон сохранения электрического заряда

Методические рекомендации по решению задач на электростатику.

1. Сделать схематический рисунок, обозначив на нём точечные заряды и силы, действующие на интересующий заряд. Также, при необходимости, обозначить линии напряжённости или эквипотенциальные поверхности, относящиеся к решению задачи.

2. Выбрать систему отсчёта (например, обозначить нулевой потенциал или нулевой энергетический уровень).

3. Составить на основании законов электростатики систему уравнений в векторном виде для всех интересующих зарядов (или полей). А затем в скалярной форме, спроецировав на координатные оси векторные уравнения.

4. Решить полученную систему уравнений относительно искомых величин в общем виде, убедиться в соответствии единиц измерения и произвести вычисления.

Ссылка на основную публикацию