Интересные домашние опыты и эксперименты по физике

10 простых экспериментов для детей, которые легко повторить дома

Мотивировать ребёнка изучать физику и химию в школе можно разными способами. Например, долго объяснять, что они пригодятся в будущем для поступления в вуз. Или просто показать ему несколько классных фокусов… ой, нет, опытов, которые наглядно демонстрируют, насколько интересной может быть наука. Обязательно попытайтесь повторить это дома!

1. Достать монетку из воды, не намочив рук

Положите монету в тарелку и налейте воды. Можете сказать ребёнку, что у вас получится достать её, не прикасаясь к воде. Поставьте свечку в центр тарелки и через какое-то время накройте её стаканом. Огонь быстро погаснет, а вода поднимется вверх по перевёрнутому сосуду, открыв монету.

Почему так происходит. Когда свечка погасла, разгорячённый воздух стал остывать и, соответственно, уменьшаться в объёме. Давление внутри стакана стало стремительно падать, и вода из тарелки заполнила пустующее место.

2. Положить тяжести на яичную скорлупу

Аккуратно разбейте куриное яйцо на две части или не спешите выбрасывать их после готовки. Они пригодятся для следующего опыта.

Скорлупа куриного яйца очень хрупкая. Положите на неё любой груз (например, книгу), она тут же сломается. Но поставьте четыре половинки скорлупы как ножки, накройте их пластиком, а затем опустите на него ту же книгу. Теперь скорлупа способна выдержать её вес. Вы можете даже положить на книгу дополнительный груз, чтобы увидеть, насколько прочна эта конструкция.

Почему так происходит. Дело в том, что прочность конструкции зависит не только от материала, но и от его формы. Куполообразная форма «арочнообразно» распределяет вес по скорлупе и повышает её грузоподъёмность в несколько раз.

3. Из дыр в бутылке не выливается вода

Налейте воду в пластиковую бутылку и закройте крышку. Булавкой проделайте в бутылке одну или несколько дырок. Конечно, из отверстий тут же польётся вода. Но спустя пару секунд остановится и не будет вытекать, пока вы вновь не откроете крышку.

Почему так происходит. Вода остаётся даже в бутылке с дырками благодаря поверхностному натяжению. В момент, когда вы открываете крышку, содержимое сосуда начинает сверху вытеснять атмосферное давление, силы натяжения не хватает, и вода выливается. Таким образом, зная физическую основу этого фокуса, вы можете с помощью крышки регулировать поток воды.

4. Жидкость течёт вверх

Налейте в один бокал воду, в другой — масло. Положите вырезанный кусок картона на бокал воды и переверните. Картон как будто приклеится к бокалу и не будет падать вниз. Бокал воды горлышко к горлышку положите на бокал с маслом. Затем аккуратно сдвиньте картон, создав небольшую щель между двумя сосудами. После этого масло «потечёт» вверх, а вода начнёт перемещаться в нижний бокал.

Почему так происходит. Масло легче воды, поэтому будет как будто течь наверх, пока полностью не вытеснит воду.

5. Вода мгновенно превращается в лёд

На полтора часа положите бутылку простой воды в морозилку горизонтально. Затем аккуратно достаньте её из холодильника, встряхните или резким движением поставьте на стол. Охлаждённая вода моментально превратится в лёд.

Почему так происходит. Сначала воде недоставало центра кристаллизации. Но после встряхивания кристаллы льда соединяются друг с другом, и вода мгновенно замерзает.

6. Мост из бумаги

Сложите из книг две небольшие башни. Положите два листа бумаги сверху, соединив их как мост. Этот мост ожидаемо окажется не очень крепким, любой груз продавит его вниз. Но бумажный мост может быть гораздо прочнее. Сложите те же листы гармошкой и вновь положите их между книгами. Теперь мост выдержит даже ещё одну книгу поверх.

Почему так происходит. Конструкция стала прочнее благодаря «ребру жёсткости» — технологии, которая применяется в реальном строительстве. Ширина опоры увеличилась, и поэтому возросла грузоподъёмность даже моста из бумаги.

7. Опыт с равновесием

Возьмите винную пробку. С двух сторон воткните в неё вилки. В торец пробки воткните зубочистку или иголку. Затем положите зубочистку на край стакана. Вся конструкция опирается на зубочистку и остаётся в равновесии.

Почему так происходит. Две вилки, зубочистка и пробка образуют твёрдое тело. Из-за сложной формы тела его центр масс находится ниже точки опоры, что позволяет сохранять равновесие.

8. Яйцо затягивает в бутылку

Возьмите очищенное и сваренное яйцо и попробуйте протолкнуть его внутрь бутылки. Скорее всего, у вас ничего не получится, яйцо не пройдёт через горлышко. Но есть другой способ. Смочите ватку спиртом, подожгите её и поместите внутрь бутылки. Теперь положите яйцо на горлышко бутылки, и оно само, без ваших усилий, упадёт в бутылку.

Почему так происходит. Часть воздуха в бутылке сгорела, внутри образовалось пониженное давление, и давление снаружи затолкнуло яйцо.

9. Бинт вместо крышки

Наполните стакан водой. Сверху накройте стакан марлей или бинтом и закрепите её резинкой. Затем переверните стакан. Часть воды останется в стакане и упрётся в марлю как в крышку.

Почему так происходит. Вода не проходит через обычную тряпку благодаря поверхностному натяжению. В промежутках ткани возникла водяная плёнка, и её сила удерживает содержимое стакана вместе с атмосферным давлением, которое действует на него снаружи.

10. Левитирующие шарики

Включите фен и поместите теннисный шарик в поток воздуха. После этого он повиснет на месте и не сдвинется, даже если повернуть фен и дуть на шарик под другим углом. При желании и достаточной ловкости в поток можно добавить ещё один шарик.

Почему так происходит. Давление внутри струи воздуха ниже давления снаружи. Разница давлений и создаёт силы, которые действуют со всех сторон и удерживают шарик.

Физические опыты для детей в домашних условиях

Наталья Богданова
Физические опыты для детей в домашних условиях

Физические опыты для детей в домашних условиях

В этой статье речь пойдет об опытах, наглядно демонстрирующих детям такие физические явления как: атмосферное давление, свойства газов, движение воздушных потоков и возникновение тени от разных предметов.

Эти эксперименты вызовут у малыша удивление и восторг, а повторить их под вашим присмотром сможет даже четырехлетка.

1. Как наполнить бутылку водой без рук?

миска с холодной и подкрашенной для наглядности водой;

В бутылку наливаем несколько раз горячую воду, чтобы она хорошо прогрелась. Пустую горячую бутылку переворачиваем горлышком вниз и опускаем в миску с холодной водой. Наблюдаем как вода из миски набирается в бутылку и вопреки закону сообщающихся сосудов – уровень воды в бутылке значительно выше чем в миске.

Почему так происходит? Изначально хорошо прогретая бутылка наполнена теплым воздухом. По мере остывания газ сжимается, заполняя все меньший объем. Таким образом, в бутылке образуется среда пониженного давления, куда направляется вода для восстановления равновесия, ведь на воду снаружи давит атмосферное давление. Цветная вода будет поступать в бутылку до тех пор, пока давление внутри стеклянного сосуда и вне его не выровняется.

2. Танцующая монетка

Для этого опыта нам понадобятся:

стеклянная бутылка с узким горлышком, которое может полностью перекрыть монета;

Пустую открытую стеклянную бутылку оставляем в морозильной камере (или зимой на улице) на 1 час. Достаем бутылку, монетку смачиваем водой и кладем на горлышко бутылки. Через несколько секунд монетка начнет подскакивать на горлышке и издавать характерные щелчки.

Такое поведение монетки объясняется способностью газов расширяться при нагревании. Воздух – это смесь газов, а когда мы достали бутылку из холодильника она была наполнена холодным воздухом. При комнатной температуре газ внутри стал нагреваться и увеличиваться в объеме, при этом монетка закрывала ему выход. Вот теплый воздух и стал выталкивать монетку, а та в свое время стала подпрыгивать на бутылке и щелкать.

Важно чтобы монета была мокрой и плотно прилегала к горлышку, иначе фокуса не получится и теплый воздух будет беспрепятственно покидать бутылку без подбрасывания монетки.

3. Стакан – непроливайка

Предложите ребенку перевернуть наполненный водой стакан так, чтобы вода из него не вылилась. Наверняка малыш откажется от такой аферы или при первой же попытке выльет воду в таз. Научите его следующему фокусу.Нам понадобятся:

таз/раковина для подстраховки.

Накрываем стакан с водой картоном, и придерживая последний рукой — переворачиваем стакан, после чего руку убираем. Этот опыт лучше проводить над тазом/раковиной, т. к. если стакан держать перевернутым долго — картон в конце концов промокнет и вода прольется. Бумагу вместо картона лучше не использовать по той же причине.

Обсудите с ребенком: почему картон препятствует вытеканию воды из стакана, ведь он не приклеен к стакану, да и почему картон тут же не падает под действием силы тяжести?

В момент намокания – молекулы картоны взаимодействуют с молекулами воды, притягиваясь друг к другу. С этого момента вода и картон взаимодействуют как одно целое. Кроме того, намокший картон препятствует попаданию воздуха в стакан, что не дает измениться давлению внутри стакана.

При этом на картон давит не только вода из стакана, но и воздух снаружи, который формирует силу атмосферного давления. Именно атмосферное давление прижимает картон к стакану, образуя своеобразную крышку, и не дает воде выливаться.

4. Опыт с феном и полоской бумаги

Продолжаем удивлять ребенка. Сооружаем конструкцию из книжек и крепим к ним сверху полоску бумаги (мы это делали с помощью скотча). Бумага свисает с книг, как показано на фото. Ширину и длину полоски выбираете, ориентируясь на мощность фена (мы брали 4 на 25 см).

Теперь включаем фен и направляем струю воздуха параллельно лежащей бумаги. Не смотря на то, что воздух дует не на бумагу, а рядом с ней – полоска поднимается со стола и развивается как на ветру.

Почему так происходит и что заставляет полоску двигаться? Изначально на полоску действует сила тяжести и давит атмосферное давление. Фен создает сильный поток воздуха вдоль бумаги. В этом месте образуется зона пониженного давления в сторону которого и отклоняется бумага.

Начинаем учить малыша дуть мы еще до годика, готовя его к первому дню рождения. Когда ребенок подрос и в полной мере освоил этот навык – предложите ему задуть свечу через воронку. В первом случае располагая воронку таким образом, чтобы ее центр соответствовал уровню пламени. А во второй раз, чтобы пламя находилась вдоль края воронки.

Наверняка ребенок удивится, что все его старания в первом случае не дадут должного результата в виде погасшей свечи. При этом во втором случае – эффект будет моментальным.

Почему? Когда воздух попадает в воронку — он равномерно распределяется вдоль ее стенок, поэтому максимальная скорость потока наблюдается у края воронки. А в центре скорость воздуха маленькая, что не дает свече погаснуть.

6. Тень от свечи и от огня

Зажигаем сечу и расположив ее у стены или другого экрана подсветим фонариком. На стене появится тень от самой свечи, а вот от огня тени не будет. Спросите ребенка, почему так получилось?

Все дело в том, что огонь сам по себе является источником света и пропускает через себя другие световые лучи. А так как тень появляется при боковом освещении предмета, не пропускающего лучи света, то огонь не может давать тень. Но не все так просто. В зависимости от сгораемого вещества – огонь может наполняться различными примесями, сажей и т. п. В этом случае можно увидеть размытую тень, которую как раз и дают эти включения.

Консультация для родителей «Развитие мелкой моторики детей в домашних условиях» Консультация для родителей «Развитие мелкой моторики детей в домашних условиях» Мелкая моторика – это точные движения не только кистями,.

Консультация для родителей «Игровые упражнения для развития мелкой моторики детей дошкольного возраста в домашних условиях» Одним из немаловажных аспектов развития дошкольника является развитие мелкой моторики и координации движений пальцев рук. Согласно данным.

Консультация для родителей «Закаливание детей 3–4 лет в домашних условиях» Консультация для родителей “Закаливание детей 3-4 лет в домашних условиях”. Тем, кого родители начали закаливать с первых дней жизни,.

Консультация логопеда «Развитие речи детей в домашних условиях» Как организовать занятия по развитию речи в домашних условиях? Часто мы слышим поговорку: «Любое заболевание легче предупредить, чем лечить».

Мастер-класс для родителей «Сенсорное развитие детей в домашних условиях» Мастер-класс для родителей «Сенсорное развитие детей в домашних условиях» Цель мастер-класса: помочь родителям с минимальными затратами.

Мастер-класс для родителей детей старшего дошкольного возраста «Занятия с детьми степ-аэробикой в домашних условиях» Цель: Воспитание основ здорового образа жизни. Вовлечение семьи в воспитательно-образовательный и оздоровительный процесс ДОУ. Задачи: Познакомить.

Мастер-класс для родителей «Игры по сенсорному развитию для детей младшего возраста в домашних условиях» Мастер-класс для родителей «Игры по сенсорному развитию для детей младшего возраста в домашних условиях» Цель мастер-класса: помочь родителям.

Мастер-класс для родителей первой младшей группы с участием детей «Сенсорное развитие детей в домашних условиях» Муниципальное бюджетное дошкольное образовательное учреждение “Детский сад № 116 ” Мастер-класс для родителей первой младшей группы.

Мастер-класс для родителей «Сенсорное развитие детей в домашних условиях» Цель мастер-класса:помочь родителям с минимальными затратами сил и времени осуществлять целенаправленную работу по развитию мелкой моторики.

Видеоотчет «Занимательные физические опыты в нашей лаборатории» Доброго времени суток, уважаемые педагоги! Хочу поделиться новостями из нашей лаборатории “Хочу все знать”. До конца учебного года, а значит.

Консервативные и неконсервативные силы: определение и примеры

Простейшие и знакомые явления повседневности объясняет классическая механика. Отдельные теории в физике применяются, считаются в целом верными для сфер с разнообразными системами, но при установленных дополнительных ограничениях (не могут иметь всеобъемлющего проявления).

Классическая механика в границах областей исследования верна при условиях:

  • размеры объектов значительно превышают размеры атомов;
  • скорости перемещений намного существеннее отстают от скорости света;
  • гравитационное взаимодействие слабое, силы малы.

Ньютоновская механика определяет класс полей, обладающих общими свойствами. Потенциал – возможная величина, характеризующая поле силой (векторные поля), которая осуществляет работу. Потенциальным называется стационарное силовое поле, в нем работа сил поля на пути промежду двух точек не зависит от формы пути, а определяется только началом и концом расположения этих точек. Консервативные силы имеют постоянные направление и модуль (скорость, ускорение, направление перемещения не влияют). В таком поле работают потенциальные усилия, а система считается замкнутой, сумма внешних воздействий равна нулю. Cила – мера взаимодействия тел (векторная). Масса – инерционное свойство объекта (скаляр). Материя существует в виде полей.

Виды консервативных сил

Свойством консервативности обладают: сила упругости, тяжести, гравитационная сила, электростатическое взаимодействие и другие центральные. Для этих систем свойственно – работа cил при перемещении по замкнутому контуру равняется нулю. При упругих деформациях пружина возвращает свое исходное состояние по прекращению воздействия (работа =0). Если работают лишь консервативные силы, энергия общая механическая при этом не изменяется.

Потенциальные силы зависят только от положения взаимодействующих тел. Объекты притягиваются или отталкиваются. Положение точки отсчета 0 произвольное, выбирается в зависимости от задачи. Разные поля имеют различные начальные уровни потенциальной энергии. В однородном поле тяжести – от поверхности, для гравитационных полей – от далёких точек, для деформации упругости – от начального недеформированного состояния.

Сила тяжести

Еще до конца XVI в. Галилео Галилей изучал свободное падение тел под влиянием притяжения Земли. При устранении сопротивления воздуха разные тела достигают поверхности с одинаковым ускорением g, которое округленно является константой. Потенциальную энергию считают от поверхности Земли. Работа определяет изменение с противоположным знаком энергии тела.

Работа консервативных сил (тяжести) зависит только от координат двух точек пути, при замкнутом контуре = 0.

Планета Земля не круглая, а приплюснута, как груша, на полюсах. Расстояния до центра Земли от поверхности разные, поэтому ускорение на полюсах побольше, чем на экваторе. Меньшим оно будет на большей высоте над Землей. Принято усредненное число 9,81 м/с2. Притяжение к Земле вблизи ее поверхности (тяжесть) – проявление силы всемирного тяготения (гравитации).

Сила упругости

В деформируемом теле появляется сила упругости, как отклик внутренних взаимодействий частей в строении вещества. Наглядный пример – деформация растяжения или сжатия пружины. При упругих изменениях (деформациях) тело возвращает свои изначальные размеры состояния покоя по окончании действия внешней силы. При небольших смещениях x по формуле Гука упругость пропорциональна абсолютному удлинению и определяется:

, где k жесткость пружины.

Работа с полем упругой силы равна , при движении тела из равновесия зависит только от удлинения пружины в конце, если в начале она была не деформирована. Поле упругости – консервативно.

Сила гравитации

Ньютон в 1682 году открыл Закон всемирного тяготения, объясняющий движение планет. Фундаментальный закон силы тяготения был сформулирован при решении обратной задачи по движению спутника Земли Луны.

Гравитационное силовое поле притяжения порождает массивное тело. Между телами, обладающими массой, есть только силы гравитационного притяжения. Гравитация действует на массы, но массы самостоятельно не совершат ничего.

Силы зависят только от массы и расстояния в квадрате между объектами.

F = G * (Mm/R2), где G= 6,67430(15)·10 −11 м³/(кг·с²) — гравитационная постоянная.

Закон приблизительно справедлив для тел со значительно меньшими скоростями (к световой) и малой силой тяготения. Для сил гравитации в масштабах космоса, пространства и времени лишь спустя 2 века родилась теория относительности Эйнштейна.

Вектор силы тяготения, которая действует на тело через влияния других тел, равен сумме векторов сил

Сила электростатического взаимодействия

Электрическим полем называется особый вид материи, воздействующий на заряженные частицы и тела. Давно замечено свойство янтаря или эбонитовой палочки притягивать мелкие бумажки, предметы. При трении тела наэлектризовываются, приобретают электрические заряды, так, например, при печати прилипают листы бумаги в принтерах. Существует два типа зарядов: положительные и отрицательные. Одноименные заряды отталкиваются, а разные притягиваются.

Электрические заряды – источники поля, они не сами действуют, а создают электрическое поле, которое и передает их действие. Неподвижные заряды взаимодействуют с силой, нарастающей при увеличении зарядов и уменьшающейся с квадратичным ростом расстояния между ними. Закон Кулона для вакуума с двумя точечными зарядами похож на закон тяготения масс, но у последнего только сила притяжения.

Центральные кулоновские силы находятся на прямой линии, соединяющей точки центров зарядов. В потенциальных центральных полях равна 0 работа силы по замкнутой линии.

Неконсервативные силы

Поле не является потенциальным, а в нем неконсервативные силы, если не выполняется основное условие консервативности. Работа сил сопротивления воздуха и трения (не 0) будет тем больше, чем длиннее путь движения, она всегда отрицательна.

Трением добывают огонь благодаря преобразованию энергии в тепловую.

Сила трения

Направление трения противоположно скорости, работа — отрицательна и сумма не 0. Трение приводит к передаче части энергии от движения тела к движениям внутренним (тепловым молекул). Трение нагревает тело, но внутреннюю энергию тел и ее изменения не учитывают в классической механике.

Воздействие трения — неконсервативное. Длинный путь потребует больше работы для преодоления сопротивления движению. Но, если учитывать в системе все тела, трущиеся рядом, то она будет замкнутой, все усилия станут консервативными.

Сила сопротивления воздуха

В «Началах» Ньютона при доказательствах говорилось о текучих средах и применимости законов к воде и к воздуху. Кажется, что воздушная среда, которая даже не чувствуется, не может заметно мешать движению, полету. Но воздух серьезное препятствие. Сила воздушного сопротивления зависит не только от направления скорости тела (противоположна), но и от ее величины. Чем больше скорость, тем значительнее сопротивление, возрастает оно непропорционально, а быстрее, по второй степени скорости для определенного интервала.

Сопротивление F зависит от плотности среды — p, от площади сечения тела перпендикулярно направлению движения — S, от квадрата скорости движения — U и от угла атаки, наклона пластины к потоку.

Консервативные силы

Средняя оценка: 4.3

Всего получено оценок: 113.

Средняя оценка: 4.3

Всего получено оценок: 113.

Силы, действующие в механике, можно разделить на два класса, в зависимости от того, как изменяется работа этих сил при изменении формы траектории пути. Рассмотрим это деление более подробно.

Консервативные и неконсервативные силы

Работа, производимая любой силой при прямолинейном движении, равна произведению величины этой силы на путь, проделанный ею. При этом предполагается, что направление силы совпадает с направлением движения. Если сила приложена под углом $alpha$ к направлению движения, для определения работы необходимо учесть только составляющую силы, совпадающую с направлением движения. Таким образом:

Заметим, что если тело движется перпендикулярно направлению силы, работа равна нулю, а если противоположно – работа получается отрицательной. А это значит, что если тело, на которое действует сила, переместилось по прямой сперва в одну сторону, а потом обратно, вернувшись в исходную точку, суммарная работа силы на этом пути будет равна нулю.

Это происходит потому, что направление и модуль силы постоянны и не зависят ни от скорости, ни от ускорения, ни от направления перемещения. Такие силы называются консервативными (сохраняющимися).

Сила тяжести

В качестве хорошего примера консервативной силы можно рассмотреть силу тяжести. Ее направление и величина всегда постоянны. А значит, она является консервативной, и ее работа по замкнутой траектории будет равна нулю, а если траектория незамкнута – то работа силы зависит только от координат начала и конца пути. Проверим это.

Если тело массой $m$ переместилось с высоты $h_1$ на высоту $h_2$, а потом вернулось в исходную точку, то работа, произведенная силой тяжести, равна сумме работы $A_1$, совершенной при первой части движения и работы $A_2$, совершенной при движении обратно:

Работы $A_1$ и $A_2$ равны по модулю и противоположны по знаку. Их сумма равна нулю, таким образом, сила тяжести является консервативной силой.

Рис. 2. Работа силы тяжести.

Сила упругости

Консервативные силы не зависят от направления и величины скорости и ускорения, однако, они могут зависеть от координаты. При этом главная особенность – нулевая работа по замкнутому контуру сохраняется. Примером такой консервативной силы является сила упругости пружины. Она зависит от координаты. И пружина жесткостью $k$ при растяжении от $x_1$ до $x_2$ совершает работу:

Но, если сложить работу по перемещению от $x_1$ до $x_2$, и от $x_2$ до $x_1$, мы, как и в случае с силой тяжести, получим нуль. То есть, сила упругости является консервативной силой.

Диссипативные силы

Примером неконсервативной (диссипативной) силы является сила трения. Ее значение при движении тела неизменно, и равно $F_<тр>=mu N$, но направление ее зависит от направления скорости, она всегда направлена против. То есть, работа, совершаемая силой трения, всегда отрицательна:

Если тело переместилось в одну сторону, а потом вернулось, работа силы трения будет состоять из двух отрицательных компонент, равных по модулю. Их сумма не будет равна нулю. Таким образом, сила трения не является консервативной.

Еще одним примером диссипативной силы является сила воздушного сопротивления. Эта сила зависит не только от направления вектора скорости тела, но и от его модуля. Точно так же, работа силы сопротивления при движении никогда не будет равна нулю.

Рис. 3. Диссипативные силы.

Что мы узнали?

Силы, работа которых зависит только от начальной и конечной координаты перемещения, называются консервативными. Работа консервативных сил по замкнутому контуру равна нулю. Примером таких сил являются силы тяжести и упругости. Силы, зависящие от скорости перемещения, неконсервативны (диссипативны). Их работа по замкнутому контуру отлична от нуля.

Закон сохранения механической энергии

теория по физике законы сохранения

Консервативными, или потенциальными, называются такие силы, работа которых не зависит от траектории, а определяется только начальным и конечным положениями тела. Работа таких сил по перемещению тела по замкнутой траектории всегда равна нулю. Примеры потенциальных (консервативных) сил:

  • сила тяжести
  • сила упругости
  • гравитационная сила

Неконсервативные силы

Неконсервативными называются такие силы, работа которых зависит от траектории. Сама сила в этом случае зависит от модуля и направления вектора скорости. Работа таких сил может приводить к выделению тепла — часть механической энергии при этом превращается в тепловую. Примеры неконсервативных сил:

  • сила упругости
  • сила сопротивления среды

Полная механическая энергия — это сумма потенциальной и кинетической энергии тела в определенный момент времени:

Закон сохранения механической энергии

В замкнутой системе, в которой действуют консервативные силы, механическая энергия сохраняется.

Замкнутая система — это система, в которой тела, входящие в нее, взаимодействуют только друг с другом, а влиянием внешних сил можно пренебречь.

Согласно закону сохранения энергии, сумма потенциальной и кинетической энергии системы до взаимодействия тел равна сумме потенциальной и кинетической энергий системы после их взаимодействия:

Закон сохранения механической энергии для движения в поле тяжести Земли

Примеры определения полной механической энергии в начальном и конечном положении

Спуск по наклонной плоскости из состояния покоя

Высоту, на которой изначально находилось тело, можно рассчитать по формуле:

Подъем по наклонной плоскости

Высоту, на которую поднялось тело, можно рассчитать по формуле:

Высоту, на которой изначально находилось тело, можно рассчитать по формуле:

Вертикальный выстрел из пружинного пистолета

Пример №1. Камень брошен вертикально вверх. В момент броска он имел кинетическую энергию, равную 30 Дж. Какую потенциальную энергию относительно поверхности земли будет иметь камень в верхней точке траектории полета? Сопротивлением воздуха пренебречь.

Так как это условно замкнутая система (сопротивлением воздуха мы пренебрегаем), мы можем применить закон сохранения энергии:

Учтем, что в момент броска камень находился на поверхности земли. Поэтому он обладал максимальной кинетической энергией и нулевой потенциальной. Но в верхней точке траектории его скорость стала равна нулю. Поэтому его кинетическая энергия тоже стала равна нулю. Зато потенциальная энергия в этой точке возросла до максимума. Поэтому:

Следовательно, потенциальная энергия в верхней точки траектории полета равна 30 Дж.

Алгоритм решения

  1. Записать исходные данные и перевести единицы измерения величин в СИ.
  2. Записать закон сохранения механической энергии.
  3. Записать закон сохранения применительно к задаче.
  4. Выполнить общее решение.
  5. Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

  • Масса шарика: m = 100 г.
  • Высота, с которой начал падать шарик: h = 100 м.
  • Энергия, потерянная за счет сопротивления воздуха: Q = 20 Дж.

Закон сохранения механической энергии для замкнутой системы:

Согласно условию задачи, система не является замкнутой, так как на шарик действует сила сопротивления воздуха. Поэтому закон сохранения энергии примет вид:

Шарик начал падать из состояния покоя, поэтому начальная кинетическая энергия равна нулю. В момент приземления кинетическая энергия максимальная, а потенциальная равна нулю. Поэтому:

Потенциальная энергия определяется формулой:

Отсюда кинетическая энергия шарика в момент перед падением на землю равна:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

  1. Записать закон сохранения энергии.
  2. Установить зависимость полной механической энергии от высоты.
  3. Найти тип графику, соответствующий выявленной зависимости.

Решение

Запишем закон сохранения механической энергии:

Полная механическая энергия тела равна:

Исходя из закона, сумма потенциальной и кинетической энергии в начальный момент движения тела равно сумме потенциальной и кинетической энергии в конечный момент времени:

Так как полная механическая энергия не меняется с течением времени, ее графиком должна быть прямая, параллельная оси времени. Поэтому верный ответ — а.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Тело, брошенное вертикально вверх от поверхности Земли, достигло максимальной высоты 20 м. С какой начальной скоростью тело было брошено вверх? Сопротивлением воздуха пренебречь.

Алгоритм решения

Решение

Из условия задачи известна только высота h = 20 м.

Закон сохранения механической энергии для замкнутой системы:

Тело изначально находилось на поверхности Земли, поэтому его начальная потенциальная энергия равна нулю. Но кинетическая энергия в момент броска была максимальной. В верхней точке траектории скорость тела нулевая, поэтому кинетическая тоже равна нулю. Но потенциальная энергия в этот момент времени максимальна.

Кинетическая и потенциальная энергии определяются формулами:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Если многократно сжимать пружину, то она нагревается. Это можно объяснить тем, что

а) потенциальная энергия пружины переходит в кинетическую

б) кинетическая энергия пружины переходит в потенциальную

в) часть работы внешних сил переходит во внутреннюю энергию пружины

г) пружина нагревается в процессе ударов молекул воздуха о частицы вещества пружины

Алгоритм решения

  1. Сформулировать закон сохранения механической энергии.
  2. Установить причины нагревания пружины.

Решение

Закон сохранения механической энергии формулируется так: «Полная механическая энергия замкнутой системы постоянна».

Замкнутая система — эта система, составные элементы которой действуют только друг с другом, и внешние силы на систему не действуют. Но если пружину сжимать и разжимать много раз, то пружина не будет являться замкнутой системой. Поэтому закон сохранения энергии в ней не сохраняется. Но ни потенциальная, ни кинетическая энергии, ни их превращение друг в друга не вызывает нагревания. К этому может привести только воздействие внешней силы, часть которой переходит во внутреннюю.

Верный ответ — в.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Небольшие шарики, массы которых m = 30 г и M = 60 г, соединены лёгким стержнем и помещены в гладкую сферическую выемку.

В начальный момент шарики удерживаются в положении, изображённом на рисунке. Когда их отпустили без толчка, шарики стали скользить по поверхности выемки. Максимальная высота подъёма шарика массой М относительно нижней точки выемки оказалась равной 12 см. Каков радиус выемки R?

Физика Б1.Б8.

Электронное учебное пособие по разделу курса физики Механика

Механика – это раздел физики, который изучает наиболее простой вид движения материи – механическое движение и причины, вызывающие или изменяющие это движение.

Механика состоит из трех разделов: кинематики, динамики и статики. Кинематика дает математическое описание движения, не касаясь причин, которыми вызвано движение. Динамика – основной раздел механики, она изучает законы движения тел и причины, которыми вывзывается движение и его изменение. Статика изучает законы равновесия системы тел под действием приложенных сил. Мы ограничимся изучением двух основных разделов – кинематики и динамики.

Введение

Механика – это раздел физики, который изучает наиболее простой вид движения материи – механическое движение и причины, вызывающие или изменяющие это движение.

Механическое движение это изменение во времени взаимного расположения тел или частей одного и того же тела. Причиной, вызывающей механическое движение тела или его изменение, является воздействие со стороны других тел.

Развитие механики началось еще в древние времена, однако, как наука она формировалась в средние века. Основные законы механики установлены итальянским физиком и астрономом Г. Галилеем (1564-1642) и английским ученым И. Ньютоном (1643-1727).

Механику Галилея-Ньютона принято называть классической механикой. В ней изучается движение макроскопических тел, скорости которых значительно меньше скорости света с в вакууме. Законы движения тел со скоростями, близкими к скорости света сформулированы А. Эйнштейном (1879-1955), они отличаются от законов классической механики. Теория Эйнштейна называется специальной теорией относительности и лежит в основе релятивистской механики. Законы классической механики неприемлемы к описанию движения микроскопических тел (элементарных частиц – электронов, протонов, нейтронов, атомных ядер, самих атомов и т.д.) их движение описывается законами квантовой механики.

Механика состоит из трех разделов: кинематики, динамики и статики. Кинематика дает математическое описание движения, не касаясь причин, которыми вызвано движение. Динамика – основной раздел механики, она изучает законы движения тел и причины, которыми вывзывается движение и его изменение. Статика изучает законы равновесия системы тел под действием приложенных сил. Мы ограничимся изучением двух основных разделов – кинематики и динамики.

В механике для описания движения в зависимости от условий решаемой задачи пользуются различными упрощающими моделями: материальная точка, абсолютно твердое тело, абсолютно упругое тело, абсолютно неупругое тело, и т.д. Выбор той или иной модели диктуется необходимостью учесть в задаче все существенные особенности реального движения и отбросить несущественные, усложняющие решение.

Материальная точка – это тело обладающее массой, размеры и форма которого несущественны в данной задаче. Любое твердое тело или систему тел можно рассматривать как систему материальных точек. Для этого любое тело или тела системы нужно мысленно разбить на большое число частей так, чтобы размеры каждой части были пренебрежимо малы по сравнению с размерами самих тел.

Абсолютно твердое тело – это тело, расстояние между любыми точками которого остается неизменным в процессе движения или взаимодействия. Эта модель пригодна, когда можно пренебречь деформацией тел в процессе движения.

Абсолютно упругое и абсолютно неупругое тело – это два предельных случая реальных тел, деформациями которых можно и нельзя пренебречь в изучаемых процессах.

Любое движение рассматривается в пространстве и времени. В пространстве определяется местоположение тела, во времени происходит смена местоположений или состояний тела в пространстве, время выражает длительность состояния движения или процесса. Пространство и время –это два фундаментальных понятия, без которых теряется смысл понятия движения: движения не может быть вне времени и пространства.

Консервативные диссипативные и гироскопические силы

По влиянию на энергию системы и виду совершаемой работы все силы условно можно разделить на три вида:

  • консервативные;
  • диссипативные.
  • гироскопические;

Консервативные силы

Консервативные силы зависят только от взаимного положения взаимодействующих тел.

Примеры консервативных сил:

  1. Сила упругости;
  2. Сила взаимодействия электрических зарядов (Сила Кулона);
  3. Сила всемирного тяготения и сила тяжести.

Как видно из примеров, консервативные силы – это силы притяжения, или отталкивания.

Когда действуют консервативные силы, есть потенциальная энергия взаимодействия. Поэтому, консервативные силы часто называют потенциальными силами.

Потенциальная энергия – это энергия взаимного действия – притяжения, или отталкивания.

Для консервативной силы потенциальная энергия зависит только от расстояния между двумя взаимодействующими телами.

Примечание: Когда в системе действуют только консервативные силы, то в такой системе полная механическая энергия сохраняется (консервируется).

Свойство потенциальной энергии взаимодействия

Сначала нужно выбрать точку, относительно которой будем рассчитывать потенциальную энергию. И только потом относительно этой точки измерять потенциальную энергию. Выбрав другую точку отсчета, получим другую величину энергии.

Поэтому уточняют, что тело, поднятое над землей, имеет потенциальную энергию 20 Джоулей именно относительно поверхности земли. Относительно пола подвала потенциальная энергия этого тела будет больше, а относительно крыши гаража – меньше.

Работа консервативных сил

Работа консервативной силы, действующей на тело, равна уменьшению потенциальной энергии тела.

Будьте внимательны: работа равна именно уменьшению потенциальной энергии! Об этом говорит знак «минус» перед скобкой в формуле:

( E_ left( text <Дж>right)) – потенциальная энергия тела в конечной точке;

( E_ left( text <Дж>right)) – потенциальная энергия тела в начальной точке;

( A left( text <Дж>right)) – работа консервативной силы.

Примечание: Поэтому, вектор консервативной силы направлен в сторону убывания потенциальной энергии.

Свойства работы консервативных сил

Работа консервативных сил не зависит от траектории, по которой тело перемещалось из начальной точки в конечную. Работа таких сил зависит только от разницы расстояния между двумя взаимодействующими телами!

Если тела сблизились – работа положительна, если одно тело удалилось от другого — работа отрицательная.

Работа консервативных сил по перемещению тела будет равна нулю, если тело будет двигаться так, что к концу своего движения вернется в первоначальную точку.

Физики говорят: «Работа консервативной силы по замкнутому пути отсутствует», или «Консервативная сила работу на замкнутом пути не совершает».

Примечание:

Предположим, что мы измерили работу какой-либо силы на замкнутой траектории и эта работа оказалась нулевой. Совсем не обязательно, что эту силу можно назвать консервативной.

Работа по замкнутому пути бывает нулевой не только для консервативной силы! Есть еще гироскопические силы. Они, так же, не совершают работу по перемещению тела, в том числе, когда тело движется по замкнутой траектории.

Сила тяжести – это консервативная сила. Почитайте, как рассчитать работу силы тяжести.

Гироскопические силы

Гироскопические силы, действующие на тело, зависят от скорости тела и его положения в пространстве. При этом, гироскопические силы всегда перпендикулярны скорости.

Свое называние эти силы получили потому, что они встречаются в теории гироскопа. Гироскоп – прибор, содержащий быстро вращающееся тело. Оно стремится сохранить неизменной ось своего вращения.

Примером простейшего гироскопа может служить волчок (рис. 1), участвующий во вращательном движении.

Примеры гироскопических сил:

  1. Сила Лоренца;
  2. Сила Кориолиса;

Примечания:

  1. Сила Лоренца – это сила, с которой магнитное поле действует на движущуюся в нем заряженную частицу.
  2. Сила Кориолиса – одна из сил инерции. Если система отсчета вращается, ее вращение влияет на движение тел в ней. Чтобы учесть влияние вращения, француз Гаспар-Густав Кориолис предложил формулу для силы, которую впоследствии назвали в его честь.

Работа гироскопических сил

Гироскопические силы направлены под прямым углом к перемещению тела поэтому, работу не совершают. Это следует из формулы, по которой рассчитываем работу силы.

Из-за такого направления работа гироскопических сил всегда равна нулю. А если нулю равна работа, то мощность, так же, будет равняться нулю. Не важно, как при этом тело перемещается и замкнута ли его траектория.

Примечание: Когда на систему действуют консервативные силы совместно с гироскопическими, полная механическая энергия такой системы не меняется и такую систему можно называть замкнутой.

В замкнутых системах действуют только консервативные и гироскопические силы.

Диссипативные силы

Диссипативные силы уменьшают механическую энергию системы. Происходит преобразование видов энергии, в конце концов, энергия переходит в тепловую и рассеивается в окружающее пространство – теряется (диссипирует).

Примеры диссипативных сил:

  1. Сила трения (скольжения);
  2. Сила сопротивления воздуха;
  3. Сила сопротивления при движении в жидкости.

Диссипирование – преобразование энергии упорядоченных процессов в энергию процессов неупорядоченных.

Работа диссипативных сил

Закон сохранения энергии действует во всех системах. Он не зависит от того, какие силы действуют в системе.

Когда в системе действуют только консервативные силы, систему называют замкнутой.

А когда действуют диссипативные силы — энергия системы уменьшается на величину работы этих сил. При этом энергия системы никуда бесследно не исчезает, с помощью работы таких сил она переходит в тепловую энергию.

Трение – это диссипативная сила. Работа силы трения зависит от длины пройденного телом пути. На длину пути влияет траектория. Значит, работа диссипативных сил, в том числе, силы трения, зависит от траектории тела! Ознакомьтесь с расчетом работы силы трения.

Вспомните о том, что трением можно зажечь огонь. При этом, механическую энергию движения мы преобразовываем в тепловую энергию с помощью силы трения.

Примечания:

  1. Работа диссипативных сил зависит от траектории тела, а работа консервативных сил – не зависит!
  2. Если в системе действуют диссипативные силы, то их работа равна уменьшению энергии системы. Поэтому, работу диссипативных сил считаем отрицательной.
Ссылка на основную публикацию