Ассортимент товаров – определение, виды, свойства и характеристики

Понятие ассортимента, его виды, свойства, показатели

От состава и своевременного обновления ассортимента товаров в торговых предприятиях зависят степень удовлетворения спроса, издержки потребления населения, связанные с покупкой товаров, количественные и качественные показатели хозяйственной деятельности различных торговых предприятий. Отсутствие в магазинах отдельных достаточных товаров, их узкий, нестабильный или несоответствующий запросам покупателей ассортимент порождает неудовлетворенный спрос, отрицательно сказывается на экономической эффективности предприятия.

Виды и разновидности ассортимента

Ассортимент товаров – набор товаров, формируемый по определенным признакам и удовлетворяющего определенные потребности.

Работа по формированию ассортимента товаров на предприятиях торговли должно проводиться с учетом всех свойств и покупателей ассортимента. Формирование широты, глубины, структуры ассортимента реализуемых товаров, устойчивость и своевременное обновление торгового ассортимента – важные задачи коммерсантов и маркетологов.

Свойства и показатели ассортимента.

Свойство ассортимента – специфическая особенность ассортимента, проявляющаяся при его формировании.

К свойствам ассортимента относятся: широта, полнота, структура, устойчивость, новизна (обновление), рациональность, гармоничность.

Количественно оценить ассортимент товаров можно с помощью показателей ассортимента.

Различают показатели ассортимента абсолютные и относительные.

Абсолютный показатель – показатель определенный путем подсчета совокупностей товара. Причем в качестве совокупности товара могут выступать классы, группы, виды и разновидности товара. Следует различать фактический и базовый абсолютные показатели. Фактический показатель характеризует фактическое состояние набора товаров, базовое – предпочтительное. В качестве базовых показателей могут быть данные ассортиментного перечня товаров, магазинов – конкурентов, нормативных документов.

Так перечень видов и наименований ассортиментных групп однородных товаров, составляющих базовую широту и полноту ассортимента, устанавливается в стандартах на продукцию разных категорий (ГОСТ, ОСТ, СТП) и ТУ. В этих нормативных документах первый раздел называется “Классификация и ассортимент”, или “Ассортимент”, или “Виды”. Кроме того, в ряде стандартов может –быть приведена краткая характеристика видов и разновидностей товаров.

Наряду со стандартами, ассортимент товаров приводится в каталогах, прейскурантах и прайс – листах, которые составляют фирмы – изготовители или торговые организации.

Широта ассортимента – количество видов, разновидностей и наименований товаров однородных и разнородных групп. Это свойство характеризуется двумя абсолютными показателями – действительной и базовой широтой, а так же относительным показателем – коэффициентом широты.

Действительная широтад) – фактическое количество видов, разновидностей и наименований товаров, имеющихся в наличии.

Базовая широтаб) – широта, принятая за основу для сравнения. В качестве базовой широты может быть принято количество видов, разновидностей и наименований товаров, регламентированное нормативными или техническими документами (стандартами, прейскурантами, каталогами) или максимально возможное. Выбор критериев определения базового показателя широтьы определяется целями. Например, при анализе ассортиментной политики магазинов – конкурентов в качестве базового можно взять максимальный перечень товаров, имеющихся во всех обследованных магазинах.

Коэффициент широтыш) –выражается как отношение действительного количества видов, разновидностей ти наименований товаров однородных и разнородных групп к базовому. Широта может служить косвенным показателем насыщенности рынка товарами: чем больше широта, тем больше насыщенность. Показатели широты применяются в зависимости от насыщенности рынка, а так же от состояния спроса. В условиях дефицита, когда спрос превышает предложение, изготовителю и продавцу выгоднее иметь узкий ассортимент товаров, поскольку при большой широте требуются дополнительные затраты на разработку и производство новых товаров. Кроме того, производство разнообразных товаров требует более обширных закупок сырья, расширение производственных площадей, новых видов упаковки, маркировки. В торговле для широкого ассортимента требуются дополнительные площади торгового дела для выкладки товаров, кроме того увеличиваются транспортные расходы. Каково же отношение потребителя к широте ассортимента? С одной стороны, чем шире ассортимент, тем более разнообразные потребности могут быть удовлетворены. С другой стороны, при сверхвысокой широте ассортимента потребителю трудно ориентироваться в этом многообразии, что затрудняет выбор нужного товара. Поэтому широта не может служить единственным показателем рационального ассортимента.

Полнота ассортимента – способность набора товаров одной группы удовлетворять одинаковые потребности. Полнота характеризуется количеством видов, разновидностей и наименований товаров однородной группы. Показатели полноты могут быть действительными и базовыми. Действительный показатель полноты характеризуется фактическим количеством видов, разновидностей и наименований товаров однородной группы, а базовый – регламентируемым или планируемым количеством товаров.

Коэффициент полнотып) – отношение действительного показателя полноты к базовому. Наибольшее значение показателя полноты ассортимента имеют на насыщенном рынке. Чем больше полнота ассортимента, тем выше вероятность того, что потребительский спрос на товары определенной группы будет удовлетворен. Вместе с тем увеличение полноты ассортимента требует от работников торговли знания общности и различий потребительских свойств товаров разных видов, разновидностей, наименований, чтобы информировать о них потребителей. Доведение такой информации до продавца является обязанностью изготовителя и/ или поставщика.

Устойчивость ассортимента – способность набора товаров удовлетворить спрос на одни и те же товары. Особенностью таких товаров является устойчивость спроса. Коэффициент устойчивости – отношение количества видов, разновидностей и наименований товаров, пользующихся спросом у потребителей (Шу) к общему количеству видов, разновидностей и наименований товаров тех же однородных групп.

Иногда устойчивость связывают со сроком, в течении которого товары определенных видов, разновидностей и наименований находятся в реализации. В этом случае устойчивость ассортимента может зависеть, во-первых, от наличия устойчивого спроса и постоянного положения товарных запасов на эти товары; во-вторых, отсутствия или недостаточности спроса на товары, которые залеживаются на складах и прилавках; в третьих, несоответствия товарных запасов возможностям реализации товаров. Поэтому сроки реализации товаров как показатели устойчивости ассортимента не могут быть использованы при определении рациональности ассортимента.

Новизна (обновление) ассортимента – способность набора товаров удовлетворять изменившиеся потребности за счет новых товаров. Новизна характеризуется действительным обновлением – количеством новых товаров в общем перечне (Н) и степенью обновления (Кн), которая выражается через отношение количества новых товаров к общему количеству наименований товаров (или действительной широте).

Обновление – одно из направлений ассортиментной политики организации проводится, как правило, в условиях насыщенного рынка. Однако и в условиях насыщенного рынка обновление ассортимента может быть следствием дефицита сырья, производственных мощностей, необходимых для производства ранее выпускавшихся товаров. Причинами, побуждающими изготовителя продавца обновлять ассортимент, являются: замена товаров, морально устаревших, не пользующихся спросом; разработка новых товаров улучшенного качества с целью стимулирования их покупки потребителем; проектирование и разработка новых товаров, не имеющих ранее аналогов; расширение ассортимента за счет увеличения полноты для создания конкурентных преимуществ организаций.

Структура ассортимента – характеризуется удельной долей каждого вида и наименования товара в общем наборе. Показатели структуры ассортимента могут иметь натуральное или денежное выражение и носят относительный характер. Они рассчитываются как отношение количества отдельных товаров к суммарному количеству всех товаров, входящих в ассортимент. Структура ассортимента относится к реальному или прогнозируемому ассортименту и неприменима к учебному ассортименту, т.к. показывает взаимосвязь отдельных структурных элементов ассортимента через их количественное соотношение. При регулировании структуры ассортимента следует учитывать экономические выгоды предприятия в случае преобладания дорогих или дешевых товаров, окупаемость затрат на их доставку, хранение и реализацию, а также платежеспособность сегмента потребителей, на который ориентируются торговая организация. Выбор показателей структуры ассортимента в том или ином выражении определяется аналитическими целями. Если необходимо определить потребность в складских площадях, а также площади для выкладки товаров, то анализируют структуру ассортимента в натуральном выражении. При анализе прибыльности отдельных видов товаров учитывают структуру ассортимента в денежном выражении.

Ассортиментный перечень (минимум) — минимально допустимое количество видов товаров повседневного спроса, определяющих профиль розничной организации. Он устанавливается для каждого конкретного магазина с учетом его типа, размера торговой площади, места расположения. Наличие этого перечня позволяет не только рационально регулировать ассортимент товаров, но и систематически регулирововать его полноту и устойчивость. Ассортиментный перечень утверждается органами местного самоуправления. Несоблюдение его с читается нарушением правил торговли.

Рациональность ассортимента – способность набора товаров наиболее полно удовлетворять реально обоснованные потребности разных клиентов потребителей.

Коэффициент рациональности — средневзвешенное значение показателя рациональности с учетом реальных значений показателей широты, полноты, устойчивости и новизны, на соответствующие коэффициенты весомости. С определенной степенью достоверности коэффициент рациональность может свидетельствовать о рациональном ассортименте. Вероятная погрешность показывает разницу между потребностями, предполагаемыми при формировании ассортимента (прогнозируемый ассортимент), и реальными, подкрепленными покупательским спросом.

Гармоничность – свойства набора товаров разных групп, характеризующее степень их близости по обеспечению рационального товародвижения, реализации и /или использования. Наибольшей гармоничностью отличается групповой ассортимент и его разновидности, наименьшей – смешанный. Гармоничность обеспечивает качественную характеристику ассортимента и не измеряется количественно, вследствие чего свойство носит описательный характер. Стремление к гармоничности при формировании ассортимента выражается в специализации магазина или отдельных его секций. К преимуществам гармоничного ассортимента следует отнести наименьшие затраты изготовителя и продавца на доставку, хранение, реализацию, а для потребителя – на поиск и приобретение товаров, близких по назначению или дополняющих друг друга. Например, магазины типа “Все для досуга”, “Все для дома (сада)”.

Номенклатура свойств и показателей ассортимента дана в таблице 8.

|следующая лекция ==>
Услуги, оказываемые покупателям магазинами|

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Товарный ассортимент

Вы будете перенаправлены на Автор24

Определение и показатели

Товарный ассортимент – это совокупность гаммы товаров, которые были определены компанией для последующей продажи.

Гамма (ее еще называют ассортиментная группа) – это товары, которые связаны между собой единым способом функционирования, они обычно предназначены для одной и той же целевой аудитории и продаются в магазинах одного определенного типа.

Ассортимент характеризуется рядом показателей:

  1. Структура ассортимента – это соотношение всех типов и видов товаров к их общему количеству. Данный показатель – относительный, то есть выражается в процентах. Например, отношение количества групп товаров типа «молоко, сыр, йогурты, мороженое» к объему всех товаров в данном магазине отражает структуру ассортимента в молочном магазине.
  2. Широта ассортимента – это совокупное количество продуктовых групп, выраженное коэффициентом. Например, гипермаркет может продавать продукты, бытовая техника, товары для дома и сада, косметику и пр.
  3. Полнота ассортимента – это показатель соответствия фактической структуры ассортимента плановому перечню позиций. Если рассматривать супермаркет, то нужно выяснить, все ли заявленные группы представлены: продукты питания, алкоголь, бытовая химия, детские товары.
  4. Глубина ассортимента – это количество различных товаров внутри каждой продуктовой линейки. Например, если взять магазин косметики, то нужно посчитать, сколько разных товаров представлено в линейке шампуней, средств для бритья (гель, пена, лосьон), кремов (для рук, для ног, для сухой или жирной кожи).
  5. Устойчивость ассортимента – это постоянное присутствие определенного вида товара на полке в магазине. Чем больше и чаще отсутствуют группы товаров на момент проверки, тем, соответственно, ниже показатель.
  6. Новизна – это введение новых, ранее не присутствовавших в данной точке разновидностей товаров за конкретный период времени. Этот показатель отражает степень и частоту обновления ассортиментного ряда, появления новых товарных групп.
  7. Совместимость – это качественный показатель взаимоотношений между различными товарными линейками, которые связаны с используемым в производстве ресурсом и материалом, со способами производства, их конечного использования, каналов сбыта и пр.
  8. Высота ассортимента – это показатель, отражающий среднюю цену на товар в определенной продуктовой линейке (то есть по сути это показатель ценового сегмента – низкого, среднего или высокого).

Виды ассортимента

В зависимости от сложности ассортимента выделяют две его группы: сложный и простой.

Если товар можно классифицировать менее чем по трем признакам или свойствам, то такой товар относится к простой группе. Например, это могут быть овощи и фрукты, соль и мука, хозяйственное мыло и пр. Если же товар определяется как совокупность трех и более свойств, то это уже сложная группа товаров. Сюда относятся: одежда и обувь, бытовая техника, косметика и т.д.

В зависимости от цели рассмотрения ассортимента, он делится на укрупненный и развернутый. Первый тип – укрупненный – это ассортимент, в котором товары сгруппированы по ряду признаков: назначению, способу производства, сырья, использованного в производстве и т.д. Развернутый ассортимент – это уже рассмотрение ассортимента, представленного не единичными группами товара, а увеличенным количеством видов.

Также выделяют комбинированный ассортимент, представляющий из себя совокупность ряда групп товаров, имеющих разное назначение, но связанных между собой сходим спросом и удовлетворяющим индивидуальные потребности (например, в магазине одежды продается несколько видов товаров: рубашки, костюмы, брюки, но все они имеют более-менее индивидуальные мерки, разбитые на размеры).

Смешанный ассортимент – это группы продовольственных и непродовольственных товаров, состоящие из различных продуктовых линеек. Обычно такой ассортимент представлен наибольшим количеством групп и видов товаров.

Что такое дифракционная решетка: определение, длина и принцип действия

Дифракция и интерференция

В начале XIX столетия английский ученый Томас Юнг, изучая поведение монохроматического пучка света при его разделении пополам тонкой пластиной, получил дифракционную картину. Она представляла собой последовательность ярких и темных полос на экране. Используя представления о свете, как о волне, Юнг правильно объяснил результаты своих опытов. Картина, которую он наблюдал, возникала благодаря явлениям дифракции и интерференции.

Под дифракцией понимают искривление прямолинейной траектории распространения волны, когда она попадает на непрозрачное препятствие. Дифракция может проявляться в результате огибания волной препятствия (такое возможно, если длина волны намного больше препятствия) либо в результате искривления траектории, когда размеры препятствия сравнимы с длиной волны. Примером для последнего случая является проникновение света в щели и небольшие круглые отверстия.

Явление интерференции заключается в накладывании одних волн на другие. Результатом такого накладывания является искривление синусоидальной формы результирующей волны. Частными случаями интерференции являются либо максимальное усиления амплитуды, когда две волны приходят в рассматриваемую зону пространства в одной фазе, либо полное затухание волнового процесса, когда обе волны встречаются в данной зоне в противофазе.

Описанные явления позволяют понять, что такое дифракционная решетка и как она работает.

Дифракционная решетка

Уже само название говорит, что такое дифракционная решетка. Она представляет собой объект, который состоит из периодически чередующихся прозрачных и непрозрачных полос. Получить ее можно, если постепенно увеличивать число щелей, на которые падает волновой фронт. Это понятие в общем случае применимо для любой волны, однако использование оно нашло только для области видимого электромагнитного излучения, то есть для света.

Дифракционную решетку принято характеризовать тремя главными параметрами:

  • Период d — это расстояние между двумя щелями, через которые проходит свет. Поскольку длины световых волн лежат в диапазоне нескольких десятых микрометра, то величина d имеет порядок 1 мкм.
  • Постоянная решетка a — это количество прозрачных щелей, которое находятся на длине 1 мм решетки. Постоянная решетки обратна периоду d. Типичными ее значениями являются 300-600 мм-1. Как правило, значение a написано на дифракционной решетке.
  • Общее количество щелей N. Эту величину легко получить, если умножить длину дифракционной решетки на ее постоянную. Так как типичные длины составляют несколько сантиметров, то каждая решетка содержит около 10-20 тысяч щелей.

Прозрачные и отражающие решетки

Выше было описано, что такое дифракционная решетка. Теперь ответим на вопрос о том, что в действительности она собой представляет. Существуют два вида таких оптических объектов: прозрачные и отражающие.

Прозрачная решетка — это стеклянная тонкая пластинка или пластинка из прозрачного пластика, на которую нанесены штрихи. Штрихи дифракционной решетки являются препятствием для света, через них он не может пройти. Ширина штриха — это и есть вышеупомянутый период d. Оставшиеся между штрихами прозрачные зазоры играют роль щелей. При выполнении лабораторных работ используют этот вид решеток.

Отражающая решетка — это металлическая или пластиковая отполированная пластинка, на которую вместо штрихов нанесены бороздки определенной глубины. Период d — это расстояние между бороздками. Отражающие решетки часто используют при анализе спектров излучения, поскольку их дизайн позволяет распределять интенсивность максимумов дифракционной картины в пользу максимумов более высокого порядка. Оптический диск CD — яркий пример этого вида дифракционной решетки.

Принцип работы решетки

Для примера рассмотрим прозрачный оптический прибор. Предположим, что на дифракционную решетку падает свет, имеющий плоский фронт. Это очень важный момент, поскольку приведенные ниже формулы учитывают, что волновой фронт является плоским и параллельным самой пластинке (дифракция Фраунгофера). Распределенные по периодическому закону штрихи вносят в этот фронт возмущение, в результате которого на выходе из пластинки создается ситуация, будто работают множество вторичных когерентных источников излучения (принцип Гюйгенса-Френеля). Эти источники приводят к появлению дифракции.

От каждого источника (щели между штрихами) распространяется волна, которая является когерентной всем остальным N-1 волнам. Теперь предположим, что на некотором расстоянии от пластинки помещается экран (расстояние должно быть достаточным, чтобы число Френеля было намного меньше единицы). Если смотреть на экран вдоль перпендикуляра, проведенного к центру пластинки, то в результате интерференционного наложения волн от этих N источников для некоторых углов θ будут наблюдаться яркие полосы, между которыми будет тень.

Поскольку условие интерференционных максимумов является функцией длины волны, то если падающий на пластинку свет был белым, на экране будут появляться разноцветные яркие полосы.

Основная формула

Как было сказано, падающий плоский фронт волны на дифракционную решетку отображается на экране в виде ярких полос, разделенных областью тени. Каждая яркая полоса называется максимумом. Если рассмотреть условие усиления волн, приходящих в рассматриваемую область в одинаковой фазе, то можно получить формулу максимумов дифракционной решетки. Она имеет следующий вид:

Где θm — это углы между перпендикуляром к центру пластинки и направлением на соответствующую линию максимума на экране. Величина m называется порядком дифракционной решетки. Она принимает целые значения и ноль, то есть m = 0, ±1, 2, 3 и так далее.

Зная период решетки d и длину волны λ, которая падает на нее, можно рассчитать положение всех максимумов. Отметим, что вычисленные по формуле выше максимумы называются главными. В действительности между ними существует целый набор более слабых максимумов, которые часто в эксперименте не наблюдаются.

Не стоит думать, что от ширины каждой щели на дифракционной пластинке картина на экране не зависит. Ширина щели не влияет на положение максимумов, однако она влияет на их интенсивность и ширину. Так, с уменьшением щели (с увеличением числа штрихов на пластинке) снижается интенсивность каждого максимума, а его ширина увеличивается.

Дифракционная решетка в спектроскопии

Разобравшись с вопросами о том, что такое дифракционная решетка и как находить максимумы, которые она дает на экране, любопытно проанализировать, что будет происходить с белым светом, если им облучить пластинку.

Выпишем снова формулу для главных максимумов:

Если рассматривать конкретный порядок дифракции (например, m = 1), то видно, что чем больше λ, тем дальше от центрального максимума (m = 0) будет находиться соответствующая яркая линия. Это означает, что белый свет расщепляется на ряд цветов радуги, которые отображаются на экране. Причем, начиная от центра, сначала будут появляться фиолетовый и синий цвета, а затем будут идти желтый, зеленый и самый дальний максимум первого порядка будет соответствовать красному цвету.

Свойство дифракционной решетки длины волн используется в спектроскопии. Когда необходимо узнать химический состав светящегося объекта, например, далекой звезды, то ее свет собирают зеркалами и направляют на пластинку. Измеряя углы θm, можно определить все длины волн спектра, а значит, и химические элементы, которые их излучают.

Ниже приводится видео, которое демонстрирует способность решеток с разным числом N расщеплять свет от лампы.

Понятие «угловая дисперсия»

Под этой величиной понимают изменения угла возникновения максимума на экране. Если изменить на небольшую величину длину монохроматического света, то получим:

Если левую и правую части равенства в формуле для главных максимумов продифференцировать по θm и λ соответственно, то можно получить выражение для дисперсии. Оно будет равно:

Дисперсию необходимо знать при определении разрешающей способности пластинки.

Что такое разрешающая способность?

Говоря простыми словами, это способность дифракционной решетки разделять две волны с близкими значениями λ на два отдельных максимума на экране. Согласно критерию лорда Рэлея, две линии можно различить, если угловая дистанция между ними окажется больше половины их угловой ширины. Полуширина линии определяется по формуле:

Различие между линиями в соответствии с критерием Рэлея возможно, если:

Подставляя формулу для дисперсии и полуширины, получаем конечное условие:

Разрешающая способность решетки повышается с увеличением числа щелей (штрихов) на ней и с ростом порядка дифракции.

Решение задачи

Применим полученные знания для решения простой задачи. Пусть на дифракционную решетку падает свет. Известно, что длина волны равна 450 нм, а период решетки составляет 3 мкм. Какой максимальный порядок дифракции можно наблюдать на кране?

Для ответа на вопрос следует подставить данные в уравнение решетки. Получаем:

Так как синус больше единицы быть не может, тогда получаем, что максимальный порядок дифракции для указанных условий задачи равен 6.

Дифракционная решетка: как это работает

Изучение одного из самых распространенных физических явлений – дифракции – привело к возникновению такого устройства, как дифракционная решетка.

В России крупнейший производитель дифракционной оптики – «Швабе» Госкорпорации Ростех. Дифракционные решетки холдинга сегодня функционируют во многих оптических приборах, и не только у нас в стране, но и за рубежом.

Дифракционная решетка: как увидеть радугу

Дифракционная решетка – это оптический прибор, представляющий собой поверхность, на которую нанесено большое число параллельных, равноотстоящих друг от друга микроскопических штрихов (щелей или выступов). Уже из самого названия прибора понятно, что он работает по принципу дифракции света – явления отклонения света от прямолинейного распространения при встрече с препятствием.

У электромагнитных волн, составляющих свет, разный эффект интерференции, или по-простому способности огибать препятствия. Проходя через дифракционную решетку, световые волны огибают препятствия решетки (штрихи, щели или выступы) с разным углом отклонения. Для каждой длины волны существует свой угол дифракции, и белый свет раскладывается штрихами решетки в спектр, то есть в радугу. Кстати, эффект радуги основан на таком же принципе, только в роли решетки – капельки воды.

В природе можно обнаружить и множество других естественных дифракционных решеток. Примером грубой дифракционной решетки можно считать ресницы. Смотря на свет сквозь прищуренные веки, можно в какой-то момент увидеть спектральные линии. А физик Джеймс Грегори, который впервые применил дифракционную решетку, использовал в этом качестве птичье перо. Благодаря очень тонкой структуре через перо можно пропустить солнечный свет и увидеть его разложение на спектр.

Изготовление: 3600 штрихов на миллиметр

Сегодня дифракционную решетку можно сделать самому из более современных материалов, например DVD-диска. Шаг между штрихами такой решетки составляет 0,74 мкм. Это намного более впечатляющий результат по сравнению с самой первой искусственной дифракционной решеткой в мире, которая появилась в 1875 году: она состояла из 50 натянутых волосков с расстоянием между ними в 250 мкм.

Число штрихов современной дифракционной решетки может доходить до 3600 на один миллиметр, и процесс изготовления такого устройства требует очень высокой точности. Если хоть одна щель из множества будет нанесена с ошибкой, то решетка будет забракована. Нарезание решетки длится до 7 суток, хотя время нанесения штриха составляет 3 секунды.

Существуют два вида дифракционных решеток: прозрачные и отражательные. Прозрачная решетка – это стеклянная тонкая пластинка или пластинка из прозрачного пластика, на которую нанесены штрихи. Штрихи дифракционной решетки являются препятствием для света, через них он не может пройти. Оставшиеся между штрихами прозрачные зазоры играют роль щелей. При выполнении лабораторных работ чаще используют этот вид решеток.

Отражательная решетка – это металлическая или пластиковая отполированная пластинка, на которую вместо штрихов нанесены бороздки определенной глубины. Такие решетки часто используют при анализе спектров излучения. Вышеупомянутый DVD-диск – яркий пример этого вида дифракционной решетки: расположив его перед глазом, можно найти на нем спектр.

Практическое применение: от ДНК до далекой звезды

Дифракционные решетки широко применяются в различных оптических устройствах: спектральных приборах для получения монохроматического света (монохроматоры, спектрофотометры и др.), в качестве оптических датчиков линейных и угловых перемещений, для поляризаторов и оптических фильтров и даже в так называемых антибликовых очках.

Дифракционные решетки нашли свое применение во многих научных исследованиях. Например, этот прибор лег в основу рентгеноструктурного анализа – самого распространенного метода определения структуры вещества. Этот способ заключается в измерении параметров кристаллической решетки посредством дифракции рентгеновских лучей. То есть в данном случае дифракционная решетка используется не для определения длины волны света, а для обратной задачи – нахождения по длине волны постоянной решетки (расстояния между штрихами).

В настоящее время широко используют рентгеноструктурный анализ биологических молекул и систем. Так, например, по данным, полученным этим методом, из нескольких возможных химических формул пенициллина была выбрана одна. В свое время этим методом были с успехом исследованы такие высокополимерные соединения, как каучук, целлюлоза, многие полиамиды и т.д. Именно с помощью рентгеноструктурного анализа американец Джеймс Уотсон и англичанин Френсис Крик установили структуру молекулы ДНК (двойная спираль), за что и были удостоены в 1962 году Нобелевской премии.

Сегодня изделия дифракционной оптики применяются для научных исследований в области экологии. Например, в составе гиперспектральных камер для оценки качества воздуха. С их помощью определяют состав и состояние объекта съемки, фиксируя спектральные характеристики каждого пикселя на изображении.

Государственный институт прикладной оптики (ГИПО) холдинга «Швабе» – крупнейший производитель дифракционной оптики в России – поставляет для этих целей решетки и за рубеж. Только за прошлый год было поставлено более 400 изделий в Германию, Ирландию, Норвегию, Словакию и другие страны.

Дифракционная решетка шагнула и далеко за пределы Земли. С ее помощью, например, можно узнать химический состав далеких звезд. Свет, идущий от звезды, собирают зеркалами и направляют на решетку. Таким образом можно узнать все длины волн спектра, а значит, и химические элементы, которые их излучают.

События, связанные с этим

Облакомер: дотянуться до облаков

Звезда по имени Солнце: о совместном проекте «Швабе» и РАН

Дифракционная решетка. Принцип действия дифракционной решетки

Не секрет, что наряду с осязаемой материей нас окружают и волновые поля со своими процессами и законами. Это могут быть и электромагнитные, и звуковые, и световые колебания, которые неразрывно связаны с видимым миром, взаимодействуют с ним и влияют на него. Такие процессы и воздействия издавна изучались разными учеными, выведшими основные законы, актуальные и по сей день. Одной из широко применяемых форм взаимодействия материи и волны является дифракция, изучение которой привело к возникновению такого устройства, как дифракционная решетка, получившего широкое применение и в приборах для дальнейшего исследования волнового излучения, и в быту.

Понятие дифракции

Дифракцией называют процесс огибания световыми, звуковыми и прочими волнами какого-либо препятствия, встретившегося на их пути. Более обобщенно этим термином можно назвать любое отклонение распространения волн от законов геометрической оптики, происходящее вблизи препятствий. За счет явления дифракции волны попадают в область геометрической тени, огибают препятствия, проникают сквозь маленькие отверстия в экранах и прочем. К примеру, можно хорошо услышать звук, находясь за углом дома, в результате того, что звуковая волна огибает его. Дифракция световых лучей проявляется в том, что область тени не соответствует пропускному отверстию или имеющемуся препятствию. Именно на этом явлении основан принцип действия дифракционной решетки. Поэтому исследование данных понятий неотделимо друг от друга.

Понятие дифракционной решетки

Дифракционная решетка является оптическим изделием, представляющим собой периодическую структуру, состоящую из большого числа очень узких щелей, разделенных непрозрачными промежутками.

Другой вариант этого устройства – совокупность параллельных микроскопических штрихов, имеющих одинаковую форму, нанесенных на вогнутую или плоскую оптическую поверхность с одинаковым заданным шагом. При падении на решетку световых волн происходит процесс перераспределения волнового фронта в пространстве, что обусловлено явлением дифракции. То есть белый свет разлагается на отдельные волны, имеющие различную длину, что зависит от спектральных характеристик дифракционной решетки. Чаще всего для работы с видимым диапазоном спектра (с длиной волн 390-780 нм) используют устройства, имеющие от 300 до 1600 штрихов на один миллиметр. На практике решетка выглядит как плоская стеклянная или металлическая поверхность с нанесенными с определенным интервалом шероховатыми бороздками (штрихами), не пропускающими свет. С помощью стеклянных решеток наблюдения ведут и в проходящем, и в отраженном свете, с помощью металлических – только в отраженном.

Виды решёток

Как уже было сказано, по применяемому при изготовлении материалу и особенностям использования выделяют дифракционные решетки отражательные и прозрачные. К первым относятся устройства, представляющие собой металлическую зеркальную поверхность с нанесенными штрихами, которые применяют для наблюдений в отраженном свете. В прозрачных решетках штрихи наносят на специальную оптическую, пропускающую лучи поверхность (плоскую или вогнутую), или же вырезаются узкие щели в непрозрачном материале. Исследования при применении таких устройств проводят в проходящем свете. Примером грубой дифракционной решетки в природе можно считать ресницы. Смотря сквозь прищуренные веки, можно в какой-то момент увидеть спектральные линии.

Принцип действия

Работа дифракционной решетки основана на явлении дифракции световой волны, которая, проходя через систему прозрачных и непрозрачных областей, разбивается на обособленные пучки когерентного света. Они претерпевают дифракцию на штрихах. И при этом интерферируют друг с другом. Каждая длина волны имеет свою величину угла дифракции, поэтому происходит разложение белого света в спектр.

Разрешающая способность дифракционной решетки

Являясь оптическим устройством, применяемым в спектральных приборах, она обладает рядом характеристик, определяющих ее использование. Одно из таких свойств – разрешающая способность, заключающаяся в возможности раздельного наблюдения двух спектральных линий, обладающих близкой длиной волн. Повышения этой характеристики добиваются увеличением общего количества штрихов, имеющихся в дифракционной решетке.

В хорошем устройстве число штрихов на один миллиметр достигает 500, то есть при общей длине решетки 100 миллиметров полное количество штрихов составит 50 000. Такая цифра поможет добиться более узких интерференционных максимумов, что позволит выделить близкие спектральные линии.

Применение дифракционных решеток

С помощью данного оптического устройства можно точно определить длину волны, поэтому его применяют как диспергирующий элемент в спектральных приборах различного назначения. Дифракционная решетка применяется для выделения монохроматического света (в монохроматорах, спектрофотометрах и других), в качестве оптического датчика линейных или угловых перемещений (так называемая измерительная решетка), в поляризаторах и оптических фильтрах, в качестве делителя пучков излучения в интерферометре, а также в антибликовых очках.

В быту довольно часто можно столкнуться с примерами дифракционных решеток. Простейшей из отражательных можно считать нарезку компакт-дисков, так как на их поверхность по спирали нанесена дорожка с шагом 1,6 мкм между витками. Третья часть ширины (0,5 мкм) такой дорожки приходится на углубление (где содержится записанная информация), рассеивающее падающий свет, а около двух третей (1,1 мкм) занимает нетронутая подложка, способная отражать лучи. Следовательно, компакт-диск является отражательной дифракционной решеткой с периодом 1,6 мкм. Другим примером такого устройства являются голограммы различного вида и направления применения.

Изготовление

Для получения качественной дифракционной решетки необходимо соблюдать очень высокую точность изготовления. Ошибка при нанесении хоть одного штриха или щели приводит к моментальной выбраковке изделия. Для процесса изготовления применяется особая делительная машина с алмазными резцами, крепящаяся к специальному массивному фундаменту. До начала процесса нарезки решетки это оборудование должно проработать от 5 до 20 часов в холостом режиме, чтобы стабилизировать все узлы. Изготовление одной дифракционной решетки занимает почти 7 суток. Несмотря на то что нанесение каждого штриха происходит всего лишь за 3 секунды. Решетки при таком изготовлении обладают равноотстающими друг от друга параллельными штрихами, форма сечения которых зависит от профиля алмазного резца.

Современные дифракционные решетки для спектральных приборов

В настоящее время получила распространение новая технология их изготовления с помощью образования на особых светочувствительных материалах, называемых фоторезистами, интерференционной картины, получаемой от излучения лазеров. В результате выпускается продукция с голографическим эффектом. Наносить штрихи подобным образом можно на ровную поверхность, получая плоскую дифракционную решетку или вогнутую сферическую, что даст вогнутое устройство, имеющее фокусирующее действие. В конструкции современных спектральных приборов применяются и те и другие.

Таким образом, явление дифракции распространено в повседневной жизни повсеместно. Это обуславливает широкое применение такого основанного на данном процессе устройства, как дифракционная решетка. Она может как стать частью научно-исследовательского оборудования, так и встретиться в быту, например, в качестве основы голографической продукции.

Дифракционная решётка — что собой представляет, принцип действия, основная формула

Дифракционная решётка — оптическое устройство, воздействие которого основано на применении дифракции света. Результатом являются области, что отображают лучи, и те, что рассеивают их. Исследования с помощью подобной сетки проводятся в отражённом свете. Дифракционный вид решётки считается результатом взаимной интерференции волн, исходящих от всех ячеек.

Зона Френеля

При поддержке ДР осуществляется взаимное наращивание многолучевого распространения или уменьшение амплитуды когерентных световых пучков, которые считаются дифракционными. Правильное определение принципа Гюйгенса-Френеля: плоскость волны в любой момент является не простой оболочкой вторичных линий, а результатом их интерференции.

Чтобы найти амплитуду световой волны от монохроматического точечного источника света в случайной точке O изотропной среды, необходимо обрамить основные устройства шаром с радиусом r = QD. Интерференция волн от вторичных источников, расположенных на плоскости, определяет амплитуду в рассматриваемой точке О, то есть необходимо добавить когерентные колебания от всех вторичных объектов на плоскости волны.

Поскольку расстояния от них до точки О различны, барабаны начнут растягиваться в разные фазы. Длина кратчайшего пути от точки O до плоской волны равна 0. Первая зона Френеля ограничена точками плоскости, расстояния от которых до точки О такие же. Края других зон нацелены таким же образом. Когда отличие траекторий от двух соседних зон составляет половину длины волны, барабаны из них попадают в точку О в циркулирующих фазах, появляется небольшое количество шума, если разность траекторий равна длине волны интерференции.

Таким образом, если препятствие соответствует целому числу линий волн, оно станет взаимно скомпенсированным, и в этой точке будет замечено чёрное пятнышко. В случае нечётного числа полуволн, это красочное пятно. Расчёты могут помочь правильно понять, каким образом свет от точечного источника, излучающего сферические волны, достигает случайной точки в пространстве.

Дифракция от всех типов препятствий:

  • узкая проволока;
  • из круглого отверстия;
  • от круглого запечатанного экрана.

Наблюдение при исследовании

Дифракция происходит на объектах любого размера, а не только пропорционально длине волны λ. Сложность исследования заключается в том, что из-за малой длины световой волны максимумы интерференции находятся достаточно близко друг к другу, а их интенсивность быстро уменьшается. ДФ может великолепно следовать на расстоянии.

Если дифракция незаметна и происходит затемнение, объект невидим, появляется резкая тень. Диаметр экрана D определяет границу геометрической оптики. Если наблюдение выполняется на расстоянии, волновые свойства света начинают проявляться в пропорциях применимости геометрической оптики, где d-величина объекта.

Шаблоны распределения шума из разных точек объекта перекрываются, и изображение становится размытым, в результате чего устройство не выделяет отдельные части объекта. Дифракция может наблюдаться и определяет разрешение любого оптического устройства.

Человеческому глазу оно видно примерно под тем же углом:

  • буква D — диаметр зрачка;
  • телескоп α = 0,02;
  • микроскоп: ёмкость не более 2−103 раз.

Можно видеть объекты, размеры которых сопоставимы с длиной линии света.

Дифракционная особенность

Световая дифракция — предельное отклонение лазерного луча и изменение направления волны. Отклонение силы разложения связано с прохождением света через сетку, которая содержит многочисленные щели. Дифракционная сетка является тем лучше, чем большее количество зазоров содержит уплотнение.

Ширина щели сравнима с размером световой волны. Когда лазерный свет проходит через зазор в дифракционной сетке, происходит дифракция света. Период дифракционной решётки обладает свойством: когда последовательный лазерный луч проходит через несколько зазоров, плотно расположенных рядом друг с другом, происходят помехи волн (перекрытие) и на экране можно наблюдать полосы.

Прибор главной оптики состоит из большого числа параллельных равноудалённых черт одинаковой формы, нанесенных на плоскую или вогнутую подложку, где происходит дифракция падающей волны. Обычно это прозрачная пластина или металлическое зеркало с плотно нанесёнными — более 1 тыс. в 1 мм — трещинами или с полосками, полученными методами голографии. Возникающие щели вызывают угловой прогиб дисперсии, проходящих (отражённых) линейных лучей света.

Собранные через линзу лучи дают на экране в случае монохроматического света изображение бликов (очередные яркие полоски возникают в направлениях, для которых различия оптики и интерференционных пучков являются целым кратным длине линии сгибаемого света), а в случае белого света — непрерывным спектром. Особым типом дифракционной сетки является ступенчатая (отражающая), построенная А. Михельсоном. ДР является основным компонентом большинства спектральных приборов.

Спектральный анализ

ДС является инструментом для проведения спектрального анализа света. Она образует систему равных, параллельных и одинаково расположенных зазоров. Используется для точных измерений длин световых волн и представляет собой систему препятствий для линий, расположенных в пространстве или на поверхности, периодически или случайно. Препятствий возникает явление дифракции (отсюда и название сетки).

Постоянная дифракционная решётка — параметр, характеризующий сетку. Он выражает расстояние между отверстиями (щелями). Зависимость значения постоянной линии и угла изгиба α представляет формулу дифракционной решётки:

общее уравнение — nλ = d•sina

  • λ — длина волны;
  • n — правительство провисания.

Фиксированная сетка может легко измеряться:

Установить устройство следует таким образом, чтобы солнце хорошо светило на панель, расположенную в его узкой части. Там размещена ДС. Смотреть изображение нужно фокусирующим экраном. Следует обратить внимание, что наблюдаемые оттенки расположены в обратном порядке, чем призма. Красный цвет является наиболее сильно отклоняемым от направления света, падающего на сетку, а фиолетовая гамма на третьем месте.

Особенности явления

Дифракционная сетка представляет собой плотно очерченную пластину, которая может содержать до тысячи зазоров на миллиметр. Солнечный свет в этом опыте проявляет волновую природу, проходя через щели, наклоняется и качается. Это явление носит название отклонения и есть на каждом слоте сетки. Расходящиеся с прорезями волны накладываются друг на друга и усиливаются в определённых местах (различных для света длины волны и разного цвета), что называют излучением. Благодаря дифракции и интерференции можно наблюдать спектр солнечного света с цветами, расположенными в обратном порядке, чем в призме.

Дифракционные сетки используются при строительстве спектрометров — устройств, используемых для разделения света на его составляющие. Такой анализ позволяет определить, какие химические элементы входят в объект. Благодаря анализу спектра учёные могут определить химический состав даже очень далёких звёзд. Аналогичным образом преобразуются радужные блики, наблюдаемые, когда свет отскакивает от компакт-диска.

Когда необходимо разделить свет с разными длинами волн с высоким разрешением, дифракционная решётка является наиболее предпочтительным инструментом. Этот «суперпризменный» аспект приводит ДС к применению для измерения атомных спектров как в лабораторных приборах, так и в телескопах.

Условие максимальной интенсивности такое же, как и для двойной щели или нескольких, но большое количество зазоров обеспечивает высокое разрешение для применения в спектроскопии, то есть результат может отличаться. Различные длины волн дифрагируют под разными углами в зависимости от классификации сетки. Важна разрешающая способность дифракционной решётки и некоторые другие характеристики.

Дифракция света и дифракционная решетка

Содержание:

Первые опыты и активные исследования природы света начались еще в далеком XVII веке, когда итальянский ученый Франческо Гримальди впервые открыл такое интересное физическое явление как дифракция света. Что же такое дифракция света? Это отклонение света от прямолинейного распространения в силу определенных препятствий на его пути. Более научное объяснение причинам дифракции света было дано в начале XIX века английским ученым Томасом Юнгом, согласно нему дифракция света возможна благодаря тому, что свет представляет собой волну, идущую от своего источника и естественным образом искривляющуюся при попадании на определенные препятствия. Им же была изобретена первая дифракционная решетка, представляющая собой оптический прибор, работающий на основе дифракции света, то есть специально искривляющий световую волну.

Дифракция и интерференция света

Изучая поведение монохроматического пучка света, Томас Юнг, разделив его пополам, получил дифракционную картину, которая представляла собой последовательное чередование ярких и темных полос на экране. Волновая теория природы света, сформированная Юнгом, прекрасно объясняла это явление. Будучи волной, пучок света при попадании на непрозрачное препятствие искривляется, меняет траекторию своего движения. Так появляется дифракция света, при которой свет может, как целиком огибать препятствия (если длина световой волны больше размеров препятствия) или искривлять свою траекторию (когда размеры препятствий сопоставимы с длиной световой волны). Примером тут может быть попадание света через узкие щели или небольшие отверстия, как на фото ниже.

Луч света в пещере, наглядная иллюстрация дифракции света в природе.

А тут на картинке показано более схематическое изображение дифракции.

Физическое явление дифракции света дополняет еще одно важное свойство световой волны – интерференция света. Суть интерференции света заключается в накладывании одних световых волн на другие. В результате может происходить искривление синусоидальной формы результирующей волны.

Так схематически выглядит интерференция.

При этом, волны, которые накладываются, могут, как усиливать мощь общей световой волны (при совпадении амплитуд), так и наоборот погасить ее.

Дифракционная решетка

Как мы писали выше, дифракционная решетка представляет собой простой оптический прибор, который искривляет световую волну.

Вот так она выглядит.

Или еще чуть более маленький экземпляр.

Также дифракционную решетку можно охарактеризовать тремя параметрами:

  • Период d. Он представляет собой расстояние между двумя щелями, через которые проходит свет. Так как длина световой волны обычно находится в диапазоне нескольких десятых микрометра, то величина d обычно имеет 1 микрометр.
  • Постоянная решетка а. Это количество прозрачных щелей на длине 1 мм поверхности решетки. Эта величина обратно пропорциональна периоду дифракционной решетки d. Обычно имеет 300-600 мм -1
  • Общее количество щелей N. Высчитывается путем умножения длины дифракционной решетки на ее постоянную а. Обычно длина решетки имеет несколько сантиметров, а количество щелей при этом составляет 10-20 тысяч.

Виды решеток

На самом деле есть целых два вида дифракционных решеток: прозрачная и отражающая.

Прозрачная решетка представляет собой прозрачную тонкую пластину из стекла или прозрачного пластика, на которую нанесены штрихи. Штрихи эти как раз и являются препятствиями для световой волны, сквозь них она не может пройти. Ширина штриха – это и есть, по сути, период дифракционной решетки d. А оставшиеся между штрихами прозрачные зазоры – это щели. Такие решетки наиболее часто применяются при выполнении лабораторных работ.

Отражающая дифракционная решетка – это металлическая либо пластиковая и отполированная пластина. Вместо штрихов на нее нанесены бороздки определенной глубины. Период d соответственно это расстояние между этими бороздками. Простым примером отражающей дифракционной решетки может быть оптический CD диск.

Такие решетки часто используют при анализе спектров излучения, так как благодаря их дизайну можно удобно распределить интенсивность максимумов дифракционной картины на пользу максимумов более высокого порядка.

Принцип работы

Представим, что на нашу решетку падает свет, имеющий плоский фронт. Это важный момент, так как классическая формула будет верна при условии, что волновой фронт является плоским и параллельным самой пластинке. Штрихи решетки будут вносить в этот световой фронт возмущение и как результат на выходе из решетки создаться ситуация будто бы работает множество когерентных (синхронных) источников излучения. Эти источники и являются причиной дифракции.

От каждого источника (по сути щели между штрихами решетки) будут распространяться световые волны, которые будут когерентными (синхронными) друг другу. Если на некотором расстоянии от решетки поместить экран, то мы сможем увидеть на нем яркие полосы, между которыми будет тень.

Формула

Яркие полосы, которые мы увидим на экране можно также назвать максимумами решетки. Если рассматривать условия усиления световых волн, то можно вывести формулу максимума дифракционной решетки, вот она.

Где θm это углы между перпендикуляром к центру пластинки и направлением на соответствующую линию максимума на экране. Величина m называется порядком дифракционной решетки. Она принимает целые значения и ноль, то есть m = 0, ±1, 2, 3 и так далее. λ – длина световой волны, а d – период решетки.

Таким образом, можно рассчитать положение всех максимумов решетки.

Разрешающая способность

Разрешающей способностью называют способность решетки разделить две волны с близкими значениями длины λ на два отдельных максимума на экране.

Применение

Какое же практическое применение дифракционной решетки, в чем ее конкретная польза? Дифракционная решетка является важным и незаменимым инструментов в спектроскопии, так с ее помощью можно узнать, например, химический состав далекой звезды. Свет, идущий от этой звезды, собирают зеркалами и направляют на решетку. Измеряя значения θm можно узнать все длины волн спектра, а значит и химические элементы, которые их излучают.

Видео

И в завершение интересное образовательное видео по теме нашей статьи от заслуженного учителя Украины – Павла Виктора, на наш взгляд его видео лекции на Ютубе по физике могут быть очень полезными для всех, кто изучает этот предмет.

Ссылка на основную публикацию