Органоиды движения – строение, характеристики и функции

Строение и функции органоидов движения в клетках организма

Органоиды движения — это маленькие наросты на мембране клеток. Они состоят из системы микротрубочек. Эти клеточные структуры обеспечивают передвижение клеток и рост организма. К ним относятся жгутики, реснички, ложноножки и миофибриллы. Строение и функцию органоидов движения изучают на уроках биологии в средней школе.

  1. Прокариоты и эукариоты
  2. Устройство жгутиков
  3. Особенности работы
  4. Движение бактерий
  5. Характеристика и деятельность ресничек
  6. Ложноножки или псевдоподии
  7. Миофибриллы в мышцах

Прокариоты и эукариоты

Все живые организмы делятся на прокариотов и эукариотов. Их клетки отличаются по строению. Прокариоты — это одноклеточные организмы. К ним относятся некоторые простейшие и бактерии, а также сине-зелёные водоросли. Их клетка не имеет ядра и органелл. Она содержит одну нить ДНК.

К эукариотам относятся как одноклеточные, так и многоклеточные организмы. Их клетка содержит ядро и органеллы. Среди них есть структуры, которые обеспечивают транспортную функцию. Их называют органоидами движения. Эти клеточные элементы подразделяют на следующие виды:

  • жгутики;
  • реснички;
  • ложноножки (псевдоподии);
  • миофибриллы.

Органоиды движения присутствуют преимущественно у эукариотов. Жгутики существуют лишь у некоторых прокариотов, например, у бактерий и архей.

Органеллы, обеспечивающие перемещение, есть и в человеческом организме. Например, слизистая оболочка бронхов выстлана ресничками, которые перемещаются строго в одном направлении. Это обеспечивает удаление пыли и инородных частиц из дыхательных путей. Жгутики есть у мужских половых клеток. Благодаря их наличию, становится возможным процесс оплодотворения яйцеклетки.

Устройство жгутиков

Жгутики — это выросты цитоплазмы, которые находятся на внешней поверхности клеточной мембраны. Они выглядят как длинные нити. Каждый жгутик содержит 9 парных микротрубочек, которые соединены между собой нексиновыми мостиками, состоящими из белка.

Между микротрубочками и нексиновыми элементами проходит аксонема. Так называется осевая нить, которая составляет основу или цитоскелет органоида. В аксонеме происходит распад молекулы аденозинтрифосфата (АТФ) при взаимодействии с водой. В результате этой реакции высвобождается много энергии, которая необходима для поддержания жизнедеятельности организма. Эукариотические клетки обычно имеют от 1 до 8 жгутиков. Среди прокариотов встречается немало многожгутиковых форм.

Особенности работы

Многие прокариотические и эукариотические клетки снабжены жгутиками. Перемещение одноклеточных жгутиковых бактерий и инфузорий осуществляется только благодаря наличию этих органоидов. Жгутики прикрепляются к цитоплазме с помощью базального тельца. При гидролизе АТФ в аксонеме высвобождается энергия. Под её действием микротрубочки извиваются, и клетка перемещается.

Основная роль жгутиков — обеспечение движения. С их помощью клетки способны перемещаться в жидкой среде. Эти органоиды также выполняют дополнительные функции:

  1. Обеспечивают формирование колоний микроорганизмов.
  2. Способствуют контакту организмов с внешней средой.
  3. Помогают симбиотическим бактериям проникать внутрь клеток.
  4. Защищают клетку от проникновения вирусов.

У эукариотов жгутики содержат больше белков, чем у прокариотов. Эукариотические органеллы движения не только используются для перемещения, но и принимают участие в клеточном питании и размножении. Они могут также выполнять функцию о́ргана чувств и служить в качестве крошечной антенны.

Движение бактерий

Подавляющее большинство бактерий имеет жгутики. Особенностью этих органоидов является их расположение. Они находятся на противоположных сторонах клетки и прочно встроены в мембрану. В их состав входят следующие элементы:

  1. Филамент. Это нить, которая выходит за пределы цитоплазмы.
  2. Базальное тело. Представляет собой белковый чехол с мембраной, внутри которой расположена вращающаяся ось (мотор).
  3. Крюк. Это гибкий элемент, который соединяет филамент с базальным телом.

Бактериальный жгутик вращается по часовой стрелке. Этот процесс запускается с помощью энергии, которая высвобождается при распаде молекулы АТФ.

Характеристика и деятельность ресничек

Реснички — это первые органеллы, которые были обнаружены с помощью микроскопа. При большом увеличении они выглядят как короткие и очень тонкие волоски. Эти органоиды гораздо короче, чем жгутики и располагаются концентрированными группами. Реснички делятся на две разновидности:

  • подвижные;
  • неподвижные.

Подвижные реснички состоят из 9 пар наружных микротрубочек и 2 пар центральных. Они содержат моторный белок динеин, который обеспечивает их движение. Снаружи эти органоиды покрыты плотной мембраной.

Этот вид ресничек перемещается волнообразными, ритмичными движениями. Их основная функция — очищение органов. Большое количество этих органелл сконцентрировано на слизистой дыхательных путей и среднего уха. Они выводят из организма пыль, грязь и вредные микроорганизмы. Это помогает предотвратить инфекционные болезни.

Некоторые одноклеточные организмы, например, ресничные инфузории способны передвигаться только с помощью этих органелл. У многих беспозвоночных ресничками покрыта вся поверхность тела. У морских животных, таких как кальмары, реснички помогают смешивать жидкости окружающей среды. Они перемещают бактерии в защищённые участки тела.

Неподвижные или первичные реснички имеют другое строение. У них отсутствуют центральные микротрубочки и моторный белок динеин. Эти органеллы не могут перемещаться.

Функция первичных ресничек долгое время оставалась неясной для учёных. В настоящее время известно, что эти структуры играют сенсо́рную роль и способны улавливать сигналы из внешней среды. Их можно обнаружить в рецепторах сетчатки глаза и обонятельного тракта. Они обеспечивают восприятие света и запахов.

Ложноножки или псевдоподии

Ложноножки или псевдоподии представляют собой выросты цитоплазмического вещества. Они не имеют плотной оболочки. Эти органоиды образуются вследствие перетекания цитоплазмы из одной части клетки в другую.

С помощью ложноножек перемещаются следующие виды одноклеточных простейших:

  • амёбы;
  • фораминиферы;
  • арцеллы.

Эти выросты носят непостоянный характер. Ложноножки появляются периодически, а затем исчезают. Они необходимы простейшим для передвижения и захвата пищи.

Псевдоподии не могут обеспечить одноклеточным организмам быстрое перемещение. Например, амёба передвигается со скоростью около 0,2 мм в минуту. Движение осуществляется под действием белков — миозина и актина. С помощью ложноножек простейшие закрепляются в субстрате.

Когда простейшее находит добычу, то ложноножка охватывает частицу пищи со всех сторон. Вокруг еды образуется пузырь — пищеварительная вакуоль. В него поступают специальные соки из цитоплазмы, которые переваривают пищу. Непереработанные частицы удаляются через клеточную оболочку.

У некоторых простейших псевдоподии образуют ловчую сеть. Она располагается вокруг одноклеточного организма и удерживает добычу. Размеры этой сети могут быть значительно больше диаметра клетки.

Миофибриллы в мышцах

Миофибриллы содержатся только в мышечных клетках. Они обеспечивают сокращения мускулатуры. Чтобы понять, какую роль играют эти органоиды, нужно разобраться в их строении.

Миофибриллы состоят из комплекса белков — саркомера. Они не имеют оболочек и соединяются с мышцами белковыми нитями. Это тонкие органоиды, которые могут достигать довольно большой длины.

Центральная нервная система подаёт сигналы в мускулатуру. Под действием этих импульсов миофибриллы уменьшаются в размерах. Они приводят в движение мышцу, которая начинает сокращаться. Этот процесс сопровождается высвобождением энергии, которая определяет мышечную силу.

Когда человек занимается спортом и регулярно тренируется, то количество миофибрилл возрастает. Это приводит к нарастанию мышечной массы. При этом крупные органоиды начинают делиться на несколько маленьких. Это позволяет мускулатуре получать больше энергии.

Если мышца травмирована, то численность миофибрилл уменьшается, а саркомеры разрушаются. В результате мышечная ткань получает мало энергии. Вернуть мускулатуре прежнюю силу удаётся далеко не сразу. Восстановление мышцы после травмы обычно занимает немало времени.

Органоиды движения — строение, характеристики и функции

Органоиды движения — небольшие наросты на клеточной мембране, состоящие из системы микротрубочек. Они позволяют клеткам свободно перемещаться, что способствует росту живых организмов. Реснички, жгутики, псевдоподии и миофибриллы являются основными представителями органоидов движения. Строение и функции этих органелл изучаются на уроках биологии в 6 классе.

Краткая информация

Органоиды движения содержатся в растительных и животных клетках, входящих в состав многоклеточных организмов. Структура этих органелл формируется из молекул белков и фосфолипидов. Их средний размер составляет 0,25—100 мкм. В таблице перечислены основные особенности органоидов движения.

Наименование органоида движенияСтроениеФункции органоидов движенияНазвание одноклеточного организма
ЖгутикиЦитоплазматические наросты, расположенные на поверхности мембраныПередвижение клетокЖгутиковые инфузории
РесничкиТонкие выросты на эластичной структуре клеткиОчистка органов от пылиРесничные инфузории
Псевдоподии (ложноножки)Выступы в цитоплазме клеткиПитание и передвижение организмаСаркодовые
МиофибриллыНити малой толщиныСокращение мышцКорненожки

В человеческом организме присутствует большое количество ресничек и жгутиков. Они предназначены для очищения легких, защиты эпителия и стабильного функционирования репродуктивной системы. Принцип работы этих органоидов движения заключается в установлении прочных связей с клеточной мембраной.

Жгутики бактерий и архей

Жгутик — органоид движения эукариотов, обеспечивающий передвижение клеточных организмов в жидкой среде. Они содержатся в протистах, зооспорах и половых клетках. Эти органеллы представляют собой небольшие наросты, окруженные эластичной пленкой. Жгутики имеют цитоскелет, где осуществляется процесс гидролиза АТФ. Второстепенные функции жгутиков:

  • формирование биологических пленок;
  • обеспечение контакта клеточных организмов с субстратами;
  • облегчение проникания симбиотических бактерий в клетки;
  • включение защитных механизмов иммунной системы;
  • предотвращение заражения клетки инфекционными вирусами.

Жгутик эукариотических клеток представляет собой комплексный структурный элемент. Он включает в себя 9 пар микротрубочек, соединенных нексиновыми мостиками. Между ними присутствует переходная зона эксонемы. В центральной части жгутика располагается ось с центриолями. На следующем рисунке описано строение органоида в разрезе.

80% бактерий состоят из жгутиков. Они находятся на противоположных полюсах клеточного организма. Отличительной чертой жгутиков бактерий является их расположение в клетке. Они вмонтированы в оболочку клеточного организма. Вращение жгутика осуществляется при помощи энергии, получаемой при гидролизе АТФ. Органоид перемещается по часовой стрелке. Частотный диапазон вращения органеллы составляет от 200 до 1850 Гц. Бактериальный жгутик состоит из следующих компонентов:

  • Филамент. Представляет собой нитевидную структуру. Длина этого компонента составляет не более 14 мкм. Нить располагается за пределами цитоплазмы.
  • Базальное тело. Представлено в виде муреинового чехла, окруженного мембранной оболочкой. Оно состоит из системы секреции и мотора.
  • Крюк. Гибкий элемент, соединенный с филаментом и базальным телом. Его длина составляет 55 нм.

    Основным рабочим элементом жгутика бактерий является филамент. Этот компонент объединяет несколько тысяч субъединиц фосфолипидов и белка. При вращении органоида филамент приобретает форму спирали, закрученной в левую сторону.

    Базальное тело бактериального жгутика состоит из следующих частей:

    • оси клеточного центра;
    • L-кольца;
    • P-кольца;
    • MS-кольца;
    • ротора;
    • C-кольца.

    Для определения характера передвижения жгутика требуется знать количество ресурсов, поставляемых основными компонентами базального тела.

    Жгутики архей состоят из археллума, включающего в себя 7—13 различных генов. Структура этого органоида формируется едиными оперонами. Функцией жгутиков архей является перемещение клеточных организмов во влажной среде, но они не принимают участия в формировании биологических пленок.

    Механизм работы ресничек

    Реснички представляют собой тонкие органеллы в форме волоса. Находясь в неподвижном состоянии, эти органоиды выполняют роль рецепторов. Поверхность ресничек покрыта плотной цитоплазматической мембраной. В состав органеллы входит большое количество микротрубочек. В центральной части ресничек расположено базальтовое тело с центриолями.

    В микротрубочках присутствуют белковые структуры, обеспечивающие стабильное скольжение ресничек. Во время передвижения органоиды совершают удары. Они предназначены для деполяризации клеточной мембраны. Характер и направление ударов зависят от процентного содержания ионов кальция в структуре ресничек.

    Псевдоподии и миофибриллы

    Псевдоподии представляют собой цитоплазматические выросты без плотной клеточной оболочки. В школьных учебниках эти органеллы также могут называться ложноножками. Псевдоподии сдержат простейшие организмы:

    • амебы;
    • арцеллы;
    • фораминиферы.

    Ложноножки предназначены для всасывания питательных веществ. Также к их функциям относится перемещение клеточных организмов. Скорость движения клеток составляет не более 0,2 мм/мин. Во время перемещения псевдоподии закрепляются в субстрате и захватывают частицы пищи. В результате этого процесса формируется пищеварительная вакуоль.

    Миофибриллы представляют собой органоиды, состоящие из тонких белковых филаментов. Они располагаются в мышечном волокне и не имеют клеточной оболочки. Миофибриллы окружены саркоплазматическим ретикулумом, состоящим из саркомеров. Связь этих органелл с мышцами обеспечивается при помощи белковых нитей.

    Миофибриллы обеспечивают стабильное сокращение мышечных волокон. При воздействии нервных импульсов эти органоиды начинают уменьшаться. В результате сокращения числа органоидов образуется энергия, определяющая силу мышцы. Во время силовых тренировок количество миофибрилл увеличивается. Этот процесс называется гипертрофией. Большие органоиды начинают делиться на несколько маленьких, иначе мышцы не смогут получать достаточное количество энергии.

    После травмирования мышечных волокон число миофибрилл уменьшается. Этот процесс ускоряется при наличии гипса, фиксирующего мышцы в определенном положении. Это обусловлено разрушением саркомеров. В результате сокращения количества миофибрилл мышцы получают меньше энергии.

    Органоиды движения

    Средняя оценка: 4.7

    Всего получено оценок: 324.

    Средняя оценка: 4.7

    Всего получено оценок: 324.

    Каждый живой организм состоит из клеток, многие из которых способны двигаться. В данной статье мы расскажем об органоидах движения, их строении и выполняемых функциях.

    Органоиды движения одноклеточных организмов

    В современной биологии клетки делятся на прокариотов и эукариотов. К первым относятся представители простейших организмов, которые содержат одну кольцевую нить ДНК и не имеют ядра (сине-зелёные водоросли, бактерии).

    Эукариоты имеют ядро и состоят из разнообразных органоидов, одними из которых являются органоиды движения.

    К органоидам движения одноклеточных организмов относятся реснички, жгутики, нитевидные образования – миофибриллы, ложноножки. С их помощью клетка может свободно передвигаться.

    Органоиды движения встречаются и в многоклеточных организмах. Так, например, у человека бронхиальный эпителий покрыт множеством ресничек, которые двигаются строго в одном порядке. При этом образуется так называемая «волна», способная защитить дыхательные пути от пыли, инородных частиц. А также жгутики имеются у сперматозоидов (специализированных клетках мужского организма, служащих для размножения).

    которые читают вместе с этой

    Двигательная функция также может осуществляться за счёт сокращения микроволоконец (мионем), которые расположены в цитоплазме под покровами.

    Строение и функции органоидов движения

    Органоиды движения – это выросты мембраны, которые в диаметре достигают 0,25 мкм. По своему строению жгутики намного длиннее ресничек.

    Длина жгутика сперматозоида у некоторых млекопитающих может достигать 100 мкм, в то время как размер ресничек составляет до 15 мкм.

    Несмотря на такие различия, внутреннее строение данных органоидов абсолютно одинаковое. Образуются они из микротрубочек, которые по своему строению схожи с центриолями клеточного центра.

    Двигательные движения образуются за счёт скольжения микротрубочек между собой, в результате чего они изгибаются. У основания данных органоидов находится базальное тельце, которое крепит их к клеточной цитоплазме. Чтобы обеспечить работу органоидов движения, клетка расходует энергию АТФ.

    Рис. 2. Строение жгутика.

    Некоторые клетки (амёбы, лейкоциты) передвигаются за счёт псевдоподий, другими словами – ложноножек. Однако, в отличие от жгутиков и ресничек, псевдоподии – это временные образования. Они могут исчезать и появляться в разных местах цитоплазмы. К их функциям относится передвижение, а также захват пищи и других частиц.

    Жгутики состоят из нити, крюка и базального тельца. По числу и расположению этих органоидов на поверхности бактерий они распределяются на:

    • Монотрихи (один жгутик);
    • Амфитрихи (по одному жгутику на разных полюсах);
    • Лофотрихи (пучок образований на одном или обоих полюсах);
    • Перитрихи (множество жгутиков, расположенных по всей поверхности клетки).

    Рис. 3. Разновидности жгутиконосцев.

    Среди выполняемых функций органоидов движения можно выделить:

    • обеспечение движением одноклеточного организма;
    • возможность мышц сокращаться;
    • защитная реакция дыхательных путей от инородных частиц;
    • продвижение жидкости.

    Жгутиконосцы играют большую роль в круговороте веществ в окружающей среде, многие из них являются хорошими индикаторами загрязнённости водоёмов.

    Что мы узнали?

    Одними из составляющих элементов клетки являются органоиды движения. К ним относятся жгутики и реснички, которые образованы с помощью микротрубочек. В их функции входит обеспечить движение одноклеточному организму, продвижение жидкостей внутри многоклеточного организма.

    Лекция № 7. Эукариотическая клетка: строение и функции органоидов

    Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.

    Эндоплазматическая сеть

    Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.

    Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты ( «отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.

    Аппарат Гольджи

    Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.

    Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).

    Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

    Лизосомы

    Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.

    Различают: 1) первичные лизосомы, 2) вторичные лизосомы. Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.

    Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

    Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

    Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

    Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.

    Вакуоли

    Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

    В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

    Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.

    Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.

    Митохондрии

    Строение митохондрии:
    1 — наружная мембрана;
    2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК.

    Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

    Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.

    Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар, где происходит накопление Н + .

    Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

    Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.

    Пластиды

    Строение пластид: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана; 6 — ламеллы; 7 — зерна крахмала; 8 — липидные капли.

    Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.

    Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

    Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н + . Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

    Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

    Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

    Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

    Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

    Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

    Рибосомы

    Строение рибосомы:
    1 — большая субъединица; 2 — малая субъединица.

    Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).

    В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы). В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).

    Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

    Функция рибосом: сборка полипептидной цепочки (синтез белка).

    Цитоскелет

    Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр составляет примерно 24 нм, толщина стенки — 5 нм. Основной химический компонент — белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты — нити диаметром 5–7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.

    Клеточный центр

    Клеточный центр включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками. В клетках высших растений (голосеменные, покрытосеменные) клеточный центр центриолей не имеет. Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей. Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.

    Органоиды движения

    Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибриллы (мышечные клетки) и др.

    Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. В основании аксонемы находятся базальные тельца, представленные двумя взаимно перпендикулярными центриолями (каждое базальное тельце состоит из девяти триплетов микротрубочек, в его центре микротрубочек нет). Длина жгутика достигает 150 мкм, реснички в несколько раз короче.

    Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.

    Перейти к лекции №6 «Эукариотическая клетка: цитоплазма, клеточная оболочка, строение и функции клеточных мембран»

    Перейти к лекции №8 «Ядро. Хромосомы»

    Смотреть оглавление (лекции №1-25)

    Органоиды движения: функции и строение, особенности движения простейших

    Клетки могут перемещаться при помощи специализированных органоидов, к которым относятся реснички и жгутики. Реснички клеток всегда многочисленны (у простейших их количество исчисляется сотнями и тысячами), а длина составляет 10-15мкм. Жгутиков же чаще всего 1-8, длина их — 20-50мкм.

    Строение и функции органоидов движения

    Строение ресничек и жгутиков, как у растительных, так и животных клеток сходно. Под электронным микроскопом обнаружено, что реснички и жгутики это немембранные органоиды, состоящие из микротрубочек. Две из них располагаются в центре, а вокруг них по периферии лежат еще 9 пар микротрубочек. Вся эта структура покрыта цитоплазматической мембраной, являющейся продолжением клеточной мембраны.

    Жгутики и реснички обеспечивают не только передвижение клеток в пространстве, но и перемещение различных веществ на поверхности клеток, а также попадание пищевых частиц в клетку. У основания ресничек и жгутиков находятся базальные тельца, которые тоже состоят из микротрубочек.

    Предполагают, что базальные тельца являются центром формирования микротрубочек жгутиков и ресничек. Базальные тельца, в свою очередь, нередко происходят из клеточного центра.

    Большое количество одноклеточных организмов и некоторые клетки многоклеточных не имеют специальных органоидов движения и передвигаются при помощи псевдоподий (ложноножек), которое получило название амебоидного. В основе его лежит движение молекул особых белков, называемых сократимыми.

    Особенности движения простейших

    Одноклеточные организмы также способны передвигаться (инфузория туфелька, эвглена зеленая, амеба обыкновенная). Для перемещения в толще воды каждая особь наделена специфическими органоидами. У простейших такими органоидами являются реснички, жгутики, ложноножки.

    Эвглена зелёная

    Эвглена зелёная — представитель простейших из класса жгутиковых. Тело эвглены веретенообразной формы, удлиненное с заостренным концом. Органоиды движения эвглены зеленой представлены жгутиком, который находится на тупом конце. Жгутики — это тонкие выросты тела, число которых варьирует от одного до десятков.

    Механизм движения при помощи жгутика отличается у разных видов. В основном это вращение в виде конуса, вершина которого обращена к телу. Перемещение наиболее эффективно при достижении углом вершины конуса 45°. Скорость колеблется в пределах от 10 до 40 оборотов за секунду. Часто наблюдается помимо вращательного движения жгутика, также его волнообразные покачивания.

    Такой характер движения свойствен для одножгутиковых видов. У многожгутиковых нередко жгутики располагаются в одной плоскости и не формируют конуса вращения.

    Микроскопическое строение жгутиков довольно сложное. Они окружены тонкой оболочкой, которая является продолжением наружного слоя эктоплазмы — пелликулы. Внутреннее пространство жгутика заполнено цитоплазмой и продольно расположенными нитями — фибриллами.

    Периферически расположенные фибриллы отвечают за осуществление движения, а центральные выполняют опорную функцию.

    Инфузория туфелька

    Передвигается инфузория туфелька за счет ресничек, осуществляя ими волнообразные движения. Направляется вперед тупым концом.

    Реснички двигаются в одной плоскости и делают прямой удар после полного выпрямления, а возвратный — в выгнутом положении. Удары идут последовательно один за другим с небольшой задержкой. Во время плаванья, инфузория осуществляет вращательные движения вокруг продольной оси.

    Реснички инфузории туфельки

    Перемещается туфелька со скоростью до 2,5мм/c. Направленность меняется за счёт перегибов тела. Если на пути будет преграда, то после столкновения инфузория начинает двигаться в противоположную сторону.

    Все реснички инфузорииимеют сходное строение с жгутиками эвглены зеленой. Ресничка у основания образует базальное зерно, которое играет важную роль в механизме движения организма.

    У некоторых инфузорий реснички соединяются между собой и таким образом позволяют развить большую скорость.

    Инфузории относятся к высокоорганизованным простейшим и свою двигательную активность они осуществляют с помощью сокращений. Форма тела простейшего может меняться, а после возвращаться в прежнее состояние. Быстрые сократительные движения возможны благодаря наличию особых волокон — мионем.

    Амеба обыкновенная

    Амеба — простейшее довольно крупных размеров (до 0,5мм). Форма тела полиподиальная, обусловлена наличием множественных псевдоподий — это выросты с внутренней циркуляцией цитоплазмы.

    У амебы обыкновенной псевдоподии еще называют ложноножками. Направляя ложноножки в разные стороны, амёба развивает скорость в 0,2 мм/минуту.

    К органоидам движения простейших не относятся цитоплазма, ядро, вакуоли, рибосомы, лизосомы, ЭПР, Аппарат Гольджи.

    Клеточные органоиды: их строение и функции.

    Строение растительной клетки : целлюлозная оболочка, мембрана, цитоплазма с органоидами, ядро, вакуоли с клеточным соком.

    Наличие пластид — главная особенность растительной клетки.

    Функции клеточной оболочки — определяет форму клетки, защищает от факторов внешней среды.

    Плазматическая мембрана — тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности.

    Цитоплазма — внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности.

    Эндоплазматическая сеть — сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы — тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белков.

    Митохондрии — органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист. АТФ — богатое энергией органическое вещество.

    Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке — главная особенность растительного организма. Хлоропласты — пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты — граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты .

    Комплекс Гольджи — система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.

    Лизосомы — тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки.

    Вакуоли — полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

    Ядро — главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы — носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро — место синтеза ДНК, и-РНК, р-РНК.

    Строение животной клетки

    Наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами.

    Наружная, или плазматическая, мембрана — отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку (пиноцитоз, фагоцитоз) и из клетки.

    Цитоплазма — внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности.

    Органоиды клетки :

    1) эндоплазматическая сеть (ЭПС) — система ветвящихся канальцев, участвует в синтезе белков, липидов и углеводов, в транспорте веществ в клетке;

    2) рибосомы — тельца, содержащие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белка;

    3) митохондрии — «силовые станции» клетки, отграничены от цитоплазмы двумя мембранами. Внутренняя образует кристы (складки), увеличивающие ее поверхность. Ферменты на кристах ускоряют реакции окисления органических веществ и синтеза молекул АТФ, богатых энергией;

    4) комплекс Гольджи — группа полостей, отграниченных мембраной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в процессах жизнедеятельности, либо удаляются из клетки. На мембранах комплекса осуществляется синтез жиров и углеводов;

    5) лизосомы — тельца, заполненные ферментами, ускоряют реакции расщепления белков до аминокислот, липидов до глицерина и жирных -.кислот, полисахаридов до моносахаридов. В лизосомах разрушаются отмершие части клетки, целые и клетки.

    Клеточные включения — скопления запасных питательных веществ: белков, жиров и углеводов.

    Ядро — наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму. Хромосомы — основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками — дочерним организмам. Ядро — место синтеза ДНК, иРНК, рРНК.

    Поясните, почему органоиды называют специализированными структурами клетки?

    Ответ: органоиды называют специализированными структурами клетки, так как они выполняют строго определенные функции, в ядре хранится наследственная информация, в митохондриях синтезируется АТФ, в хлоропластах протекает фотосинтез и т.д.

    Если у Вас есть вопросы по цитологии, то Вы можете обратиться за помощью к репетитору по биологии, он проконсультирует Вас в режиме онлайн.

    Органоиды движения – строение и функции у одноклеточных

    Каждый живой организм состоит из клеток, многие из которых способны двигаться. В данной статье мы расскажем об органоидах движения, их строении и выполняемых функциях.

    Органоиды движения одноклеточных организмов

    В современной биологии клетки делятся на прокариотов и эукариотов. К первым относятся представители простейших организмов, которые содержат одну нить ДНК и не имеют ядра (сине-зелёные водоросли, вирусы).

    Эукариоты имеют ядро и состоят из разнообразных органоидов, одними из которых являются органоиды движения.

    К органоидам движения одноклеточных организмов относятся реснички, жгутики, нитевидные образования – миофибриллы, ложноножки. С их помощью клетка может свободно передвигаться.

    Рис. 1. Разновидности органоидов движения.

    Органоиды движения встречаются и в многоклеточных организмах. Так, например, у человека бронхиальный эпителий покрыт множеством ресничек, которые двигаются строго в одном порядке. При этом образуется так называемая «волна», способная защитить дыхательные пути от пыли, инородных частиц. А также жгутики имеются у cпepматозоидов (специализированных клетках мужского организма, служащих для размножения).

    Двигательная функция также может осуществляться за счёт сокращения микроволоконец (мионем), которые расположены в цитоплазме под покровами.

    Строение и функции органоидов движения

    Органоиды движения – это выросты мембраны, которые в диаметре достигают 0,25 мкм. По своему строению жгутики намного длиннее ресничек.

    Длина жгутика cпepматозоида у некоторых млекопитающих может достигать 100 мкм, в то время как размер ресничек составляет до 15 мкм.

    Несмотря на такие различия, внутреннее строение данных органоидов абсолютно одинаковое. Образуются они из микротрубочек, которые по своему строению схожи с центриолями клеточного центра.

    Двигательные движения образуются за счёт скольжения микротрубочек между собой, в результате чего они изгибаются. У основания данных органоидов находится базальное тельце, которое крепит их к клеточной цитоплазме. Чтобы обеспечить работу органоидов движения, клетка расходует энергию АТФ.

    Рис. 2. Строение жгутика.

    Некоторые клетки (амёбы, лейкоциты) передвигаются за счёт псевдоподий, другими словами – ложноножек. Однако, в отличие от жгутиков и ресничек, псевдоподии – это временные образования. Они могут исчезать и появляться в разных местах цитоплазмы. К их функциям относится передвижение, а также захват пищи и других частиц.

    Жгутики состоят из нити, крюка и базального тельца. По числу и расположению этих органоидов на поверхности бактерий они распределяются на:

    • Монотрихи (один жгутик);
    • Амфитрихи (по одному жгутику на разных полюсах);
    • Лофотрихи (пучок образований на одном или обоих полюсах);
    • Перитрихи (множество жгутиков, расположенных по всей поверхности клетки).

    Рис. 3. Разновидности жгутиконосцев.

    Среди выполняемых функций органоидов движения можно выделить:

    • обеспечение движением одноклеточного организма;
    • возможность мышц сокращаться;
    • защитная реакция дыхательных путей от инородных частиц;
    • продвижение жидкости.

    Жгутиконосцы играют большую роль в круговороте веществ в окружающей среде, многие из них являются хорошими индикаторами загрязнённости водоёмов.

    Что мы узнали?

    Одними из составляющих элементов клетки являются органоиды движения. К ним относятся жгутики и реснички, которые образованы с помощью микротрубочек. В их функции входит обеспечить движение одноклеточному организму, продвижение жидкостей внутри многоклеточного организма.

    Благодаря удачному географическому расположению и большой площади страны, здесь можно найти пpaктически все необходимое для обеспечения нужд местной промышленности.

    16 11 2021 15:17:37

    15 11 2021 22:18:58

    Одним из них является митоз – процесс деления эукариотических клеток, при котором передаётся и сохраняется генетическая информация.

    14 11 2021 5:49:17

    Его географическое положение и погодные условия создали условия для образования уникальных биологических комплексов.

    13 11 2021 8:18:49

    Но такие же изменения можно заметить и поднимаясь в горы.

    12 11 2021 6:50:27

    Ему удалось создать точные карты и описания этого региона, собрать большое количество информации, которая оказала большую помощь при дальнейшем его изучении.

    11 11 2021 21:41:43

    Родился Николай 20 февраля 1852 года в семье с дворянскими корнями.

    10 11 2021 10:16:48

    Родился 18(29) мая 1787 года в Вологде в дворянской семье.

    09 11 2021 0:58:45

    Родился Дмитрий 12 октября 1350 года в Москве.

    08 11 2021 7:49:32

    Рассмотрим, какие события происходили во внутренней и внешней политике России 19 века.

    07 11 2021 0:57:43

    06 11 2021 19:39:21

    В биографии Северянина было окончено училище в городе Череповец.

    05 11 2021 18:41:18

    04 11 2021 11:54:36

    Среди них встречаются огромные по территории и совсем маленькие, люди в них разговаривают на разных языках, но все они являются государствами.

    03 11 2021 5:35:45

    Именно здесь находится рубеж, отделяющий Европу от Азии.

    02 11 2021 13:22:51

    01 11 2021 13:54:55

    Правила общественного существования строятся на понимании людей дисциплины, соблюдении особых требований, норм и правовых положений.

    31 10 2021 8:16:21

    Живопись, музыка, театр и другие виды искусства развивались на протяжении долгого времени.

    30 10 2021 20:14:47

    Располагаясь сразу на шести климатических поясах, он обладает уникальной и очень разнообразной природой.

    29 10 2021 2:38:39

    Восточная часть сформировалась еще в докембрийский период, и там рельеф Южной Америки представляет собой равнину – это Южно-Американская платформа.

    28 10 2021 23:31:39

    27 10 2021 23:19:52

    Главные функции клеточной мембраны – поддержание целостности клетки и осуществление взаимосвязи с внешней средой.

    26 10 2021 5:55:27

    25 10 2021 3:32:41

    Указывает на основные статьи экспорта.

    24 10 2021 7:34:24

    В сельской местности проживала основная часть населения Европы.

    23 10 2021 8:56:57

    Но такие же изменения можно заметить и поднимаясь в горы.

    22 10 2021 7:27:57

    21 10 2021 11:26:58

    Новые тенденции в европейской культуре были названы эпохой Просвещения.

    20 10 2021 15:44:52

    Данный регион отличается суровым климатом, ограниченной флорой и фауной, и невероятно богатыми природными ресурсами.

    19 10 2021 5:40:13

    Ученые понимают, что экономика отвечает за многие процессы, происходящие в странах.

    18 10 2021 12:42:45

    Каковы его особенности, и какие вещества входят в состав воздуха? .

    17 10 2021 19:24:19

    16 10 2021 18:30:28

    В этой статье мы расскажем о прямом и переносном значении слов, приведём примеры для каждого из них.

    15 10 2021 22:22:39

    Рассмотрим заключенные на нем договоры и определим, на что они были направлены.

    14 10 2021 15:29:59

    С их помощью люди решают почти все свои хозяйственные нужды: строят, отапливают помещения, ездят на трaнcпорте, создают много полезных бытовых вещей.

    13 10 2021 15:27:55

    Его субъектами являются такие единицы, которые способны управлять капиталом, финансами, трудовыми ресурсами, информацией на уровне мирового масштаба.

    12 10 2021 10:32:49

    Как известно, жизнь зародилась в воде, а лишь потом некоторые виды организмом перебрались на сушу.

    11 10 2021 19:33:17

    Так каково же внешнее и внутреннее строении птиц, чем они отличаются от других животных и какие признаки свойственны только им? Об этом рассказывают на уроках биологии в 7 классе.

    10 10 2021 22:20:23

    Демократ и гуманист, отстаивавший в XIX веке права всех людей, в независимости от цвета кожи.

    09 10 2021 4:44:24

    Кто-то может жить только в условиях леса, а кому-то подавай пресный водоем.

    08 10 2021 2:18:23

    07 10 2021 10:26:52

    06 10 2021 6:54:54

    Несмотря на то, что рассматриваемая часть света является относительно небольшой, единой общепризнанной классификации субрегионов и стран Зарубежной Европы нет.

    05 10 2021 18:47:14

    В 1900 году в биографии Дуайта Фили Дэвиса был окончен Гарвардский университет.

    04 10 2021 2:19:18

    Путешественник доказал шарообразность Земли, открыл пролив, который позже назвали его именем.

    03 10 2021 1:58:37

    Свое название этот географический объект получил благодаря одноименным островам, расположенным поблизости.

    02 10 2021 9:35:20

    Раскрывает об особенностях течения вод в Антарктиде.

    01 10 2021 8:34:47

    30 09 2021 11:20:31

    29 09 2021 19:10:14

    Однако она стала только катализатором, ведь основная причина заключалась в том, что к этому времени завершался процесс европейской феодализации.

  • Ссылка на основную публикацию