ДНК – понятие, строение и основные функции молекулы

Научная электронная библиотека

§ 3.1.3. Понятие о цитологии

Цитология – раздел биологии, изучающий жизнедеятельность клетки.

Множество простейших и микроорганизмов представляют собой существующие отдельно друг от друга клетки. Тела многоклеточных организмов построены из огромного числа клеток. Независимо от того, представляет собой клетка целостную живую систему, либо ее часть, она наделена набором признаков и свойств, характерных для всех клеток.

Клетка состоит из простых и сложных молекул белков, нуклеиновых кислот (ДНК и РНК), липидов, углеводов, минеральных веществ и, конечно же, воды. Белкам и нуклеиновым кислотам принадлежит основная роль в синтезе из простых микромолекул сложных макромолекул, в освобождении и превращении энергии из поступающих в клетку веществ.

Клетка – основная структурно-функциональная единица живого. Клетка – биологически автономная система, способная самостоятельно осуществлять все процессы, присущие живой материи (рост, размножение, раздражимость и т. д.)

Впервые клетку наблюдал Р. Гук (1665 г., Англия) на срезах пробки через систему линз. Дальнейшее ведение микроскопических исследований принадлежит члену Королевского общества Неемии Грю (1641–1712 гг.), который собрал первый микроскоп в. Общие результаты своих исследований он изложил в четырехтомном трактате, опубликованном в 1682 г. Трактат этот носил длинное название «Анатомия растений с изложением философской истории растительного мира и несколько других докладов, прочитанных перед Королевским обществом».

Но изучение срезов тканей растительных и животных организмов в 17–18 веках носили описательный характер. Более подробное изучение жизнедеятельности клетки началось с усовершенствованием увеличительной техники в 19 веке. Немецкие ученые М. Шлейден и Т. Шванн (1839 г.) сопоставили ткани растительных и животных организмов, обнаружили общий принцип строения и роста тех и других клеток.

Позднее, благодаря открытию процессов роста и деления, а также ряда биохимических процессов клетки, сформировалась клеточная теория.

Основные положения классической клеточной теории:

1. Клетка – наименьшая структурная единица живого.

2. Все живые организмы состоят из клеток (одной – одноклеточный организм, или множества – многоклеточный организм)[34].

3. Несмотря на огромное разнообразие внешних форм, все клетки сходны между собой по внутреннему строению, химическому составу и принципам жизнедеятельности.

4. «Клетка от клетки». Новые (дочерние) клетки возникают в результате деления исходной (материнской) клетки.

Клетки многоклеточного организма объединяются в ткани, ткани – в органы, органы в системы органов.

Все вещества, входящие в состав клетки (и живого организма в целом) принято делить на две группы – группу неорганических веществ и группу органических веществ (рис. 3.4):

Рис. 3.4. Простейшая классификация веществ живых организмов.
Неорганические вещества в живой клетке представлены, прежде всего, водой, а также микро- и макроэлементами, присутствующими в составе различных солей

Воды в организме содержится, в среднем 83 %. Функции воды:

а) Вода является прекрасным растворителем. Вещества, растворенные в воде, проникают в клетку, обеспечивая ее питание.

б) Продукты обмена выводятся из организма также в виде водных растворов (см. раздел «Цитоплазма»).

в) Вода поддерживает тургор (упругость) клетки.

г) Все биохимические процессы (окисление – восстановление, синтез – разложение, каталитические реакции и т. д.) происходят в водной среде.

д) Кроме того, вода обладает большой теплоемкостью и теплопроводностью, что обеспечивает гармоничное распределение и сохранение тепла в организме.

Примеры микро- и макроэлементов приведены на рис. 3.5.

Рис. 3.5. Микроэлементы и макроэлементы живого организма

Органические вещества живой клетки представляют: липиды, углеводы, белки, нуклеиновые кислоты.

Липиды – производные высших жирных кислот, химический состав которых можно представить формулой СmHnOl. К липидам, в частности, относятся жиры, химический состав которых подробно рассматривается в курсе органической химии. При этом, жидкие жиры (масла) чаще растительного происхождения (исключение – рыбий жир), твёрдые – животного происхождения (исключение – пальмовое масло).

1. Строительная. Липиды входят в состав всех биологических мембран.

2. Энергетическая. Липиды являются источником энергии для организма. При окислении 1 г липидов до СО2 и Н2О выделяется 39 кДж энергии:

[35].

Выделяющаяся при этом вода называется метаболической.

3. Теплоизоляционная. Липиды – отличный теплоизолятор. Эта функция играет большую роль при адаптации организмов к холодной среде обитания, например, моржей и тюленей в холодных водоёмах.

4. Влагообеспечивающая. Как видно из функции 2, жиры служат дополнительным источником воды в организме. Эта функция особенно важна для обитателей засушливых зон.

Углеводы, входящие в состав живых клеток, подразделяют на простые и сложные (рис. 3.6)

Рис. 3.6. Простейшая классификация углеводов, входящих в состав живых клеток

1. Энергетическая. Основным источником энергии для организма являются простые сахариды. Важнейшим из них является глюкоза. При окислении 1 г глюкозы освобождается 17,6 кДж энергии. Некоторые сложные углеводы представляют собой дополнительный запас энергии. В частности, организм получает значительное количество энергии для жизнедеятельности при окислении полимерных молекул крахмала (в телах растений) или гликогена (в телах животных).

2. Строительная. Сложные углеводы являются строительным материалом для некоторых живых организмов. Например, целлюлоза входит в состав древесины, а хитин – в наружный скелет насекомых.

Белки – сложные полимеры. На долю белков приходится 50 % от сухой массы живого организма. Белки – уникальная природная форма, из которой состоят все живые организмы планеты. В организме человека встречаются 5 млн типов белков, отличающихся не только друг от друга, но и от белков других организмов. Белки состоят из аминокислот (мономеры), соединенных друг с другом в определенной последовательности, присущей только определенному организму. Всего известно 20 разновидностей аминокислот. В молекуле белка эти аминокислоты соединены друг с другом прочной пептидной связью[36]. В состав 1 молекулы белка входят от 51 до нескольких сотен аминокислот.

1. Строительная. Белки входят в состав всех вещественных биологических структур: клеток, тканей, органов, крови (рис. 3.7).

Рис. 3.7. Простейшая классификация белков, реализующих строительную функцию

2. Каталитическая. Группа белков, являющихся катализаторами биохимических процессов, называется ферментами. Некоторые ферменты ускоряют протекание реакций в десятки и сотни тысяч раз. Схема работы ферментов с субстратами – веществами, вступающими в биохимический процесс, приведена на рис. 3.8.

3. Транспортная. Существует ряд белков, транспортирующих вещества к различным тканям (например, гемоглобин – белок, переносящий кислород к клеткам) и удаляющих продукты обмена. Многие молекулы (например, сахара) не способны проникнуть в клетку без помощи специфических белков-переносчиков.

Рис. 3.8. Схема работы ферментов:
а – сближение субстратов (С) с ферментом.; б – образование
фермент-субстратного комплекса; в – превращение субстратов
в продукты реакции (ПР); г – разъединение продуктов реакции и фермента

4. Гормональная. Гормоны – биологически активные вещества, вырабатываемые железами внутренней секреции и регулирующие физиологические процессы в организме. При недостатке гормонов возникают патологические изменения, приводящих к заболеваниям и даже гибели организма. Некоторые из гормонов являются белками.

5. Защитно-иммунная. Белки, входящие в состав иммунных клеток (лейкоцитов) обеспечивают защиту от бактерий и вирусов. Эти белки (антитела) связываются с чужеродными организму веществами, образуя комплекс, который затем удаляется из организма

7. Двигательная. Некоторые из белков, входящих в состав мышц способны сокращаться, а, значит, приводить организм в движение.

8. Энергетическая. Иногда, хотя и достаточно редко, белки могут служить дополнительным источником энергии. При окислении 1 г белка освобождается 17,6 кДж.

Нуклеиновые кислоты в живых клетках представлены двумя типами: дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (ДНК).

Современная структурная модель ДНК была впервые предложена американским биологом Дж. Уотсоном совместно с английским физиком Ф. Криком в 1953 году и представляет собой две полинуклеотидные цепи, соединённых водородными связями и закрученные в спираль. В каждой цепочке содержится от пятисот до нескольких сотен тысяч нуклеотидов. Условная схема строения нуклеотида представлена на рис. 3.9.

В нуклеотидах ДНК остаток фосфорной кислоты и дезоксирибоза – неизменные составляющие, в то время как азотистых оснований существует 4 разновидности: аденин, гуанин, цитозин и тимин. Поэтому каждый нуклеотид принято обозначать тем же названием, что и азотистое
основание, входящее в его состав (аденин, гуанин, цитозин, тимин). Поскольку водородные связи в ДНК могут возникать только попарно, по принципу комплементарности: аденин (А) связывается только с тимином (Т), гуанин (Г) – только с цитозином (Ц), то, зная последовательность одной цепи, можно составить последовательность второй цепи.

Рис. 3.9. Схема строения нуклеотида ДНК

При определённых условиях, перед делением клетки, ДНК объединяется с многочисленными белками в единый комплекс, который называется хромосома (рис. 3.10).

Рис. 3.10. Строение реплицированной (удвоенной) хромосомы

Уникальность дезоксирибонуклеиновой кислоты состоит в том, что её молекула является хранилищем сведений о составе всех белков, вырабатываемых организмом, а, значит, содержит в себе информацию обо всех его внешних и внутренних признаках, причём, передаваемую из поколения в поколение от родителей – потомству. Биологическая передача сведений потомству о своих признаках осуществляется благодаря репликации ДНК.

Репликация ДНК – это процесс её удвоения, протекающий с участием специальных ферментов при подготовке клетки к делению. Репликацию можно условно разделить на три стадии (рис. 3.11):

1. Раскручивание двойной спирали ДНК с одного конца под действием фермента.

2. Достраивание по принципу комплементарности новых цепей на разъединившихся прежних цепях.

3. Окончательное формирование двух новых ДНК. В каждой из них одна цепь принадлежала прежней ДНК, а вторая достроена по принципу комплементарности.

Рис. 3.11. Схема репликации ДНК:
а – раскручивание двойной спирали ДНК; б – достраивание новых цепей
на разъединившихся прежних цепях; в – окончательное формирование двух новых ДНК

Таким образом, при делении клетки обе дочерние клетки получают совершено одинаковые ДНК.

Также как и ДНК, молекула рибонуклеиновой кислоты (РНК) представляет собой полинуклеотидную цепь. В отличие от ДНК она одноцепочечная и содержит намного меньше нуклеотидов. Другим существенным отличием РНК от ДНК является химический состав нуклеотидов: нуклеотиды РНК содержат остаток рибозы вместо дезоксирибозы (рис. 3.12) и вместо тимина в составе нуклеотидов РНК находится урацил.

Основная функция РНК – участие в синтезе белковых молекул. В зависимости от характера этого участия РНК подразделяют на матричные или информационные (мРНК), транспортные (тРНК), рибосомальные (рРНК):

– мРНК копирует с ДНК информацию о структуре белка, который нужно синтезировать и доставляет её к месту синтеза;

– (тРНК) – доставляет необходимые аминокислоты и в определенном порядке к месту синтеза белка;

– (рРНК) – входят в состав рибосом – внутриклеточных частиц, на которых и происходит синтез белка. Иногда рибосомы называют главными «рабочими» синтеза белка.

Участок ДНК, содержащий сведения о первичной структуре одного определённого белка, называется геном. Совокупность всей информации обо всех белках, хранящаяся в ДНК иногда называют генетической программой. Последовательность нуклеотидов ДНК определяет аминокислотную последовательность молекулы белка. Эта зависимость между молекулой ДНК и строением белковой молекулы называется генетический код. Генетический код известен для всех 20 аминокислот.

Рис. 3.12. Схема строения нуклеотида РНК

Процесс передачи информации генетического кода в конкретный белок протекает следующим образом:

1. С помощью специальных ферментов на поверхности гена формируется комлементарная цепь матричной РНК. В данном случае ген является матрицей с которой делается слéпок – м-РНК.

2. Образовавшаяся м-РНК перемещается к месту синтеза белка – к рибосомам.

3. Сюда же к месту сборки белковой молекулы «доставляются» посредством тРНК определенные аминокислоты, последовательность построения которых записана на мРНК. Набору из трёх азотистых оснований, который называется триплет нуклеотидов или кодон, соответствует одна и только одна аминокислота. Например, возле нуклеотидной последовательности ГГЦ может закрепиться только глицин

а возле кодона ГЦУ – только аланин

Всего в построении белковой молекулы участвует 20 различных аминокислот.

4. Между располагающимися в строго определённой последовательности аминокислотами образуется пептидная связь

и постепенно формируется молекула белка. Следует подчеркнуть, что синтез белковых молекул осуществляется при активном участии огромного количества всевозможных ферментов.

1. Что такое клетка? В чем заключается ее биологическое значение?

2. В чем заключаются основные положения клеточной теории Шлейдена – Шванна?

3. Какие вещества неорганической природы включены в состав клетки? Объясните их значение.

4. Какое значение для клетки имеют органические вещества: липиды, углеводы и белки?

5. Что такое ДНК? Расскажите о ее строении. Каково значение ДНК для клетки?

6. О чем гласит принцип комплементарности в построении молекулы ДНК?

Произвести достройку молекулы ДНК: А-Г-Г-Г-Ц-А-Т-Г-Т-Т-А-Ц-Г-Ц.

7. Задача: в молекуле ДНК 19 % цитозина. Определить количество остальных нуклеотидов.

8. В чем биологический смысл репликации ДНК?

9. В чем особенности строения РНК? Какие виды РНК встречаются в клетке и какую функцию осуществляют?

10. Каким образом происходит реализация генетической программы?
В чем ее биологический смысл?

ДНК: история одной макромолекулы

25 апреля – День ДНК!

Открытие ДНК произошло в 1869 году швейцарским биохимиком Фридрихом Мишером, но потребовалось более 80 лет, чтобы важность этого открытия была полностью осознана. И даже сегодня, по прошествии более 150 лет, новые исследования и технологии продолжают предлагать более глубокое понимание вопроса: почему важна ДНК?

Наследственный материал человека, известный как дезоксирибонуклеиновая кислота, или ДНК, представляет собой длинную молекулу, содержащую информацию, необходимую организму для развития и размножения. ДНК находится в каждой клетке тела и передается от родителя к ребенку.

ДНК является самовоспроизводящимся материалом, который есть в каждом живом организме. Проще говоря, это носитель всей генетической информации. Он содержит своеобразные инструкции, необходимые организму для развития, роста, размножения. Это одна длинная молекула, которая содержит наш генетический «код». Этот «код» является отправной точкой для нашего развития, но влияние внешних факторов, таких как наш образ жизни, окружающая среда и питание, в конечном итоге формируют человека.

Из чего состоит ДНК?

Скачать наглядный материал в большом разрешении

ДНК человека уникальна тем, что состоит из почти 3 миллиардов пар оснований, и около 99 процентов из них одинаковы для каждого человека. Тем не менее, именно последовательность этих оснований определяет, каким будет этот организм.

Подумайте о ДНК как об отдельных буквах алфавита — буквы объединяются друг с другом в определенном порядке, образуя слова, предложения и истории. Та же самая идея верна для ДНК: то, как азотистые основания упорядочены в последовательностях ДНК, формирует гены, которые «говорят» вашим клеткам, как производить белки. Рибонуклеиновая кислота (РНК), другой тип нуклеиновой кислоты, образуется в процессе транскрипции (при репликации ДНК). Функция РНК заключается в том, чтобы транслировать генетическую информацию из ДНК в белки, когда она декодируется рибосомой.

Как работает ДНК ?

ДНК содержит жизненно важную информацию, которая передается из поколения в поколение. Молекулы ДНК в ядре клетки плотно обвиваются, образуя хромосомы, которые помогают хранить важную информацию в виде генов.

ДНК работает путем копирования себя в эту одноцепочечную молекулу под названием РНК. РНК похожа на ДНК, но она содержит некоторые существенные молекулярные различия, которые выделяют ее. РНК действует как посланник, передавая жизненно важную генетическую информацию в клетке от ДНК через рибосомы для создания белков, которые затем образуют все живое.

Как была обнаружена ДНК?
Кто открыл ДНК?

Полный ответ на вопрос, кто открыл ДНК, сложен, потому что, по правде говоря, многие люди внесли свой вклад в то, что мы знаем об этом сейчас.

1866 — Грегор Мендель, известный как «Отец генетики», был фактически первым, кто предположил, что характеристики передаются из поколения в поколение. Мендель обосновал термины, которые мы все знаем сегодня: рецессивные и доминирующие признаки.

1869 — Фридрих Мишер идентифицировал «нуклеин», выделив молекулу из ядра клетки, которая впоследствии стала известна как ДНК.

1881 — лауреат Нобелевской премии немецкий биохимик Альбрехт Коссель, которому приписывают наименование ДНК, идентифицировал нуклеин как нуклеиновую кислоту. Он также выделил те пять азотистых оснований, которые в настоящее время считаются основными строительными блоками ДНК и РНК: аденин (A), цитозин ©, гуанин (G) и тимин (T) (который заменяется урацилом (U). ) в РНК).

1882 — Вскоре после открытия Косселя Вальтер Флемминг обнаружил митоз в 1882 году, став первым биологом, который выполнил полностью систематическое исследование деления хромосом. Его наблюдения, что хромосомы удваиваются, важны для позже обнаруженной теории наследования.

Начало 1900-х годов — Теодор Бовери и Уолтер Саттон независимо работали над тем, что сейчас известно как теория хромосом Бовери-Саттона или хромосомная теория наследования. Их выводы являются основополагающими в нашем понимании того, как хромосомы переносят генетический материал и передают его из поколения в поколение.

1944 — Освальд Эвери обосновал, что ДНК, а не белки, трансформируют свойства клеток.

1944 — 1950 — Эрвин Чаргафф обнаружил, что ДНК отвечает за наследственность. Его открытия, известные как «Правила Чаргаффа», доказали, что единицы гуанина и цитозина, а также единицы аденина и тимина одинаковы в двухцепочечной ДНК, и он также обнаружил, что ДНК различается у разных видов.

Конец 1940-х годов — Барбара Мак-Клинток обнаружила мобильность генов. Ее открытие «прыгающего гена» или идеи о том, что гены могут перемещаться по хромосоме, принесло ей Нобелевскую премию по физиологии.

1951 — работа Розалинд Франклин доказала спиральную форму ДНК, что было подтверждено Уотсоном и Криком почти два года спустя. Ее выводы были признаны только посмертно.

25 апреля 1953 — Уотсон и Крик, опираясь на достижения Чаргаффа и Франклин, опубликовали структуру двойной спирали ДНК. Этот день во всем мире отмечается как день ДНК.

Биология. 11 класс

§ 7. Нуклеиновые кислоты. Строение и функции ДНК

Для каждого вида живых организмов характерны свои отличительные особенности. Более того, различия существуют и между особями одного вида, поскольку каждая из них обладает уникальным сочетанием признаков. При этом каждый организм способен передавать свои признаки потомкам по наследству.

Известно, что признаки и свойства организма определяются, прежде всего, белками, которые синтезируются в его клетках. Поэтому информацию о первичной структуре белков называют наследственной или генетической. Установлено, что данная информация содержится в молекулах нуклеиновых кислот. Эти биополимеры также обеспечивают синтез белков, т. е. реализацию наследственной информации и ее передачу последующим поколениям при размножении.

Таким образом, нуклеиновые кислоты выполняют особые функции, не характерные для других химических соединений. Нуклеиновые кислоты — это биологические полимеры, обеспечивающие хранение, реализацию и передачу наследственной информации.

Нуклеиновые кислоты были открыты в 1869 г. швейцарским биологом Ф. Мишером в ядрах лейкоцитов человека. От латинского слова nucleus — ядро и происходит название этих соединений. Нуклеиновые кислоты содержатся в клетках всех живых организмов, причем не только в ядре, но и в цитоплазме, в составе некоторых органоидов.

Строение нуклеотидов и образование полинуклеотидной цепи. Нуклеиновые кислоты — *нерегулярные* полимеры, мономерами которых являются нуклеотиды . Каждый из них состоит из трех компонентов: азотистого основания, пятиуглеродного моносахарида (пентозы) и остатка фосфорной кислоты. Центральное положение в структуре нуклеотида занимает пентоза. Азотистое основание и остаток фосфорной кислоты присоединены к ней ковалентными связями (рис. 7.1).

*Атомы углерода в составе пентозы принято обозначать цифрами с символом «штрих» — от 1′ до 5′, чтобы отличать их от атомов, образующих скелет азотистого основания (для их нумерации используют цифры без штрихов). Азотистое основание присоединяется к 1′-углеродному атому пентозы, а остаток фосфорной кислоты — к 5′.*

В состав нуклеотида может входить одно из пяти азотистых оснований: аденин , гуанин , цитозин , тимин или урацил . Аденин и гуанин относятся к пуриновым основаниям, *т. к. они являются производными пурина — гетероциклического соединения, молекула которого образована двумя конденсированными кольцами — пятичленным и шестичленным*. Цитозин, тимин и урацил *— производные шестичленного гетероциклического пиримидина , поэтому их* называют пиримидиновыми основаниями.

Название нуклеотида зависит от того, какое азотистое основание входит в его структуру. Так, существуют адениловые, гуаниловые, цитидиловые, тимидиловые и уридиловые нуклеотиды. Для удобства азотистые основания и соответствующие им нуклеотиды обычно записывают сокращенно: А, Г, Ц, Т, У.

Известны два типа нуклеиновых кислот — дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Они различаются функциями, размером и формой молекул, а также особенностями строения нуклеотидов.

Нуклеотиды ДНК содержат остаток дезоксирибозы, а нуклеотиды РНК — рибозы. Отсюда и названия — дезоксирибонуклеиновые и рибонуклеиновые кислоты. Кроме того, азотистое основание тимин (Т) может входить только в состав нуклеотидов ДНК, а урацил (У) встречается лишь в нуклеотидах РНК. Следовательно, молекулы ДНК, так же как и РНК, содержат по четыре типа нуклеотидов.

*Соединения, образованные азотистым основанием и пентозой, называют нуклеозидами. В их молекулах пятиуглеродный сахар соединен с атомом азота в составе азотистого основания N-гликозидной связью. Нуклеозиды могут присоединять остаток фосфорной кислоты, превращаясь в нуклеотиды. Названия нуклеозидов, входящих в состав нуклеотидов РНК и ДНК, приведены в таблице 7.1.

Таблица 7.1. Азотистые основания и соответствующие им нуклеозиды

Нуклеиновые кислоты: строение и функции

Урок 8. Введение в общую биологию и экологию 9 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока “Нуклеиновые кислоты: строение и функции”

Вы задумывались когда-либо о самом существе жизни? Может быть, приходилось отвечать на вопрос – что такое жизнь? А сами его когда-нибудь задавали?

Возможно, это было на первых уроках биологии в девятом классе. А представьте – завтра или уже сегодня после обеда вы встретите инопланетянина и возникнет необходимость раскрыть перед ним саму суть существования жизни на Земле. Каким будет ваш ответ?

Попробуем обратиться к истории.

Во второй половине XIX века Фридрих Энгельс, как вы знаете, отдавал предпочтение белкам. Как главным составляющим и непосредственным исполнителям, если так можно выразиться, жизни.

А в середине XX века американский физик Франк Типлер высказывал мнение, что жизнь является всего лишь информацией особого рода: «Я определяю жизнь как некую закодированную информацию, которая сохраняется естественным отбором». Трудно не согласиться с его попыткой выделить из всех критериев жизни в качестве главного способность живых организмов сохранять и передавать информацию.

Скорее всего, согласится с таким мнением и встретившийся вам инопланетянин. Но тогда у него непременно возникнет следующий вопрос – как вы это делаете?

Отвечаем прямо сейчас. На этом уроке.

Мы преодолели все предыдущие ступеньки лестницы органических веществ и полностью заслужили право узнать подробнее о самой таинственной и важной молекуле жизни на Земле – молекуле ДНК.

Точно так все ступеньки этой лестницы преодолевало и всё человечество. И именно наверху, в последнюю очередь, пытливому людскому разуму покорилась ДНК.

Это произошло в 1953 году стараниями всё тех же американцев: Джеймса Уотсона и Фрэнсиса Крика.

Джеймс Уотсон

Фрэнсис Крик

Кстати, в тесном сотрудничестве с известными Максом Перуцем и Джоном Кендрю, впервые открывшим структуры белка.

В 1962 году, пожалуй, наиважнейшее открытие в истории биологии заслуженно было отмечено Нобелевской премией. Которая была присуждена за открытие строения всего одной молекулы из многих миллионов. Но именно той, которую природа на Земле назначила носителем наследственной информации всех живых организмов.

Если быть уж совсем справедливыми, то нуклеиновые кислоты были известны задолго до открытия строения ДНК.

В 1869 году они были открыты швейцарским биохимиком Фридрихом Мишером. Неизвестное в то время соединение было выделено из ядер лейкоцитов человека и сперматозоидов лосося и было названо нуклеин (от латинского nucleus – ядро). Но позднее были выявлены кислотные свойства нуклеина, и он получил своё современное название – нуклеиновая кислота.

Нуклеиновые кислоты оказались самыми огромными биологическими молекулами с молекулярной массой до нескольких миллионов. Можно с уверенностью утверждать, что такая огромная масса возможна только в том случае, если вещество является полимером. И это так на самом деле. Нуклеиновые кислоты (а это не только ДНК) – биополимеры. Мономерами нуклеиновых кислот являются нуклеотиды.

Если ранее вы встречались с мономерами, представленными каким-либо одним веществом. Помните? Глюкоза – мономер целлюлозы, аминокислоты (но они бывают 20 видов) – мономеры белков. То мономеры нуклеиновых кислот состоят из остатков трёх веществ: фосфорной кислоты, пятиуглеродного сахара (рибозы или дезоксирибозы) и азотистого основания.

Но это ещё не всё. В состав нуклеотидов может входить пять различных азотистых оснований: аденин, гуанин, тимин, цитозин и урацил. По своему химическому строению они делятся на две группы: пуриновые и пиримидиновые. К пуриновым относятся аденин и гуанин, а к пиримидиновым – тимин, цитозин и урацил.

Таким образом, в зависимости от входящего в состав нуклеотидов азотистого основания, различают пять видов мономеров нуклеиновых кислот.

Адениловый, гуаниловый, тимидиловый, цитидиловый и урациловый нуклеотиды.

В цепочки нуклеотиды соединяются через сахар. То есть пентоза одного нуклеотида – остаток фосфорной кислоты другого – пентоза другого – остаток фосфорной кислоты третьего и так далее.

Идём дальше. Наверняка, вы уже встречались с названиями нуклеиновых кислот. Это может быть либо дезоксирибонуклеиновая кислота (ДНК), либо рибонуклеиновая кислота (РНК). Почему они так называются и как их различить? Несмотря на кажущуюся сложность, всё очень просто. Ключевая роль здесь отведена сахару, входящему в состав кислоты. Если это дезоксирибоза – кислота дезоксирибонуклеиновая. Если рибоза – рибонуклеиновая.

Обратимся к строению ДНК.

Следуя нашей схеме, ДНК – полимер. Мономером является нуклеотид. В состав нуклеотида входят остатки трёх веществ: фосфорной кислоты, дезоксирибозы и азотистого основания. Четыре из пяти азотистых оснований входит в состав ДНК: аденин, тимин, гуанин и цитозин.

Состав молекулы ДНК был известен задолго до открытия её структуры. В 1950 году американский учёный Эрвин Чаргафф установил важнейшие закономерности. Названные впоследствии правилами Чаргаффа. И которые вы обязательно должны запомнить:

1. Количество адениловых нуклеотидов в молекуле ДНК равно количеству тимидиловых, а количество гуаниловых – количеству цитидиловых.

2. Количество пуриновых азотистых оснований равно количеству пиримидиновых.

3. Суммарное количество адениловых и цитидиловых нуклеотидов равно суммарному количеству тимидиовых и гуаниловых нуклеотидов, что следует из первого правила.

На первый взгляд, это сложно, но решив уже пару задач на расчёт количества нуклеотидов, вы со всем разберётесь.

Знание состава дезоксирибонуклеиновой кислоты не проливало свет на её строение. Каково же пространственное расположение нуклеотидов в молекуле ДНК?

Оновываясь на исследованиях Чаргаффа, а также Розалинд Франклин

Джеймсу Уотсону и Фрэнсису Крику удалось найти ответ на этот вопрос.

Что же было ими установлено? А ими была установлено, что ДНК – полинуклеотидная цепочка, состоящая из двух цепей! В которой азотистые основания смотрят внутрь этой цепочки. Этот ключевой момент и был самой главной загадкой для учёных. Кроме того, располагаются они не в произвольном порядке, а строго упорядоченно. Это обусловлено тем, что между аденином и тимином в двойной спирали ДНК возникает две водородные связи, а между гуанином и цитозином – три. Таким образом, нуклеотиды образуют пары. А их соответствие друг другу называется комплементарностью.

Комплементарность нуклеотидов обуславливает комплементарность и двух цепей ДНК. Они напоминают винтовую лестницу, так как закручены вокруг общей оси. Технические параметры этой лестницы таковы: диаметр около двух нанометров, один виток спирали включает в себя 10 пар нуклеотидов. Длина одного витка – 3,4 нанометра.

Таким образом, со строением ДНК разобрались. Осталось назвать функции этого вещества в организме. Они не будут разнообразными, как например, у белков. Но, как вы понимаете, исключительно важными. Потому что в ДНК хранится вся наследственная информация организма. Практически в каждой клетке живого существа содержится информация о структуре всех его белков. И представлена она там в виде последовательности нуклеотидов. То есть, в закодированном виде.

Итак, ДНК отвечает за сохранность наследственной информации и передачу её потомкам в неизменном виде. Располагаются молекулы ДНК в эукариотической клетке, в основном, в ядре, а также в пластидах и митохондриях.

Что же, выдохнули, и давайте приниматься за РНК. Здесь попроще. Особенно после ДНК.

Вновь обратимся к нашей схеме. РНК – полимер. Мономером является нуклеотид. В состав нуклеотида входят остатки трёх веществ: фосфорной кислоты, рибозы и азотистого основания. Четыре из пяти азотистых оснований входит в состав РНК: аденин, урацил, гуанин и цитозин.

Молекулы РНК одноцепочечные и значительно короче молекул ДНК.

Но в отличие от ДНК, в клетке существует несколько видов РНК. Различаются они по размерам молекул, структуре и выполняемым функциям. Хотя все задействованы в одном важнейшем процессе – синтезе белка.

Рибосомные РНК (р-РНК) – самые многочисленные. Они составляют до 80% всех РНК клетки. Р-РНК в комплексе с белками являются основными структурными элементами рибосом, где регулируют образование пептидных связей между аминокислотами.

На долю транспортных РНК (т-РНК) приходится около 15% всех клеточных РНК. Молекулы т-РНК имеют сравнительно небольшие размеры – в среднем в их состав входит 80 нуклеотидов. А также достаточно изящную форму, которая напоминает листок клевера. От этого и пошло название структуры т-РНК – клеверный лист. Транспортные рибонуклеиновые кислоты переносят мономеры белков – аминокислоты – из цитоплазмы клетки к месту синтеза белка – в рибосомы.

И третий вид рибонуклеиновых кислот клетки – информационные РНК (и-РНК), либо их ещё называют матричными (м-РНК). Они являются самыми разнородными по размерам и структуре. Так как они несут в себе информацию о строении самых различных белков. Содержание и-РНК в клетке небольшое – 3-5% от всех РНК.
Чтобы представить себе функции информационных-РНК, забежим немножко вперёд и одним глазком взглянем на процесс синтеза белка в клетке.

Мы уяснили, что информация о последовательности аминокислот, то есть о первичной структуре любого белка, находится в ядре клетки, в ДНК. А сборка самих белков из аминокислот происходит в других клеточных органеллах – в рибосомах. Значит, нужен какой-то механизм передачи информации из ядра в рибосомы. В качестве такого механизма и выступают информационные РНК. Они передают информацию о последовательности нуклеотидов ДНК в центры сборки белковых молекул.

Лекция № 4. Строение и функции нуклеиновых кислот АТФ

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК).

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Азотистое основаниеНазвание нуклеотидаОбозначение
АденинАдениловыйА (A)
ГуанинГуаниловыйГ (G)
ТиминТимидиловыйТ (T)
ЦитозинЦитидиловыйЦ (C)

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3′-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5′-углеродом (его называют 5′-концом), другой — 3′-углеродом (3′-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности. Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа»), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3′-конца одной цепи находится 5′-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

Репликация ДНК — процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным.

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка. При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3′-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3′-конца к 5′-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3’–5′ синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей. На цепи 5’–3′ — прерывисто, фрагментами (фрагменты Оказаки), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей).

Купить проверочные работы
по биологии

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон.

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

РНК — полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК: 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3′-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса — 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК: 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК: 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2–0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

Перейти к лекции №3 «Строение и функции белков. Ферменты»

Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

Смотреть оглавление (лекции №1-25)

Строение и функции ДНК

ДНК состоит из нуклеотидов, в состав которых входят сахар – дезоксирибоза, фосфат и одно из азотистых оснований – пурин (аденин или гуанин) либо пиримидин (тимин или цитозин). Молекулы ДНК включают в себя 2 полинуклеотидные цепи, соединенные друг с другом азотистыми основаниями с помощью водородных связей по принципу комплементарности (аденин -2вод.связи-тимин, гуанин-3вод.связи-цитозин). Цепи антипараллельны: 5’-конец одной цепи соединяется с 3’-концом другой цепи. Чаще всего спирали правозакрученные. В структурной организации молекулы ДНК можно выделить первичную структуру – полинуклеотидную цепь, вторичную структуру – две комплементарные друг другу и антипараллельные полинуклеотидные цепи, соединенные водородными связями, и третичную структуру – трехмерную спираль с приведенными выше пространсвенными характеристиками. Функции ДНК – сохранение и передача наследственной информации от клетки к клетке, от организма к организму (в основе этой функции лежит репликация ДНК); регуляция всех процессов, протекающих в клетке (в основе этой функции лежит транскрипция). Свойства: способность к самокопированию (репликации), к молекулярному восстановлению (репарации).

Функции ДНК:
* Молекулы ДНК хранят (содержат) наследственную информацию (программу) о структуре специфических для каждого организма белков.
* Молекулы ДНК обеспечивают передачу наследственной информации от клетки к клетке, от организма к организму.
* Молекулы ДНК участвуют в реализации генетической информации, т. е. участвуют в процессе синтеза полипептидов.

Репликация ДНК. Ферменты репликации

Репликация ДНК — ключевое событие в ходе деления клетки. Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа:

1. инициация репликации

3. терминация репликации.

ДНК – полимераза

ДНК-полимераза — фермент, участвующий в репликации ДНК. Ферменты этого класса катализируют полимеризацию дезоксирибонуклеотидов вдоль цепочки нуклеотидов ДНК, которую фермент «читает» и использует в качестве шаблона. Тип нового нуклеотида определяется по принципу комплементарности с шаблоном, с которого ведётся считывание. Собираемая молекула комплементарна шаблонной моноспирали и идентична второму компоненту двойной спирали.

Выделяют ДНК-зависимую ДНК-полимеразу, использующую в качестве матрицы одну из цепей ДНК, и РНК-зависимую ДНК-полимеразу, способную также к считыванию информации с РНК (обратная транскрипция).

ДНК-полимеразу считают холоферментом, поскольку для нормального функционирования она требует присутствия ионов магния в качестве кофактора. В отсутствии ионов магния о ней можно говорить как об апоферментe.

ДНК-полимераза начинает репликацию ДНК, связываясь с отрезком цепи нуклеотидов. Среднее количество нуклеотидов, присоединяемое ферментов ДНК-полимеразой за один акт связывания/диссоциации с матрицей, называют процессивностью.

ДНК – лигазы

Лигаза — фермент, катализирующий соединение двух молекул с образованием новой химической связи (лигирование). При этом обычно происходит отщепление (гидролиз) небольшой химической группы от одной из молекул.

Лигазы относятся к классу ферментов EC 6.

В молекулярной биологии лигазы разделяют на две большие группы — РНК-лигазы и ДНК-лигазы. ДНК-лигаза, осуществляющая репарацию ДНК

ДНК-лигазы — ферменты, катализирующие ковалентное сшивание цепей ДНК в дуплексе при репликации, репарации и рекомбинации. Они образуют фосфодиэфирные мостики между 5′-фосфорильной и 3′-гидроксильной группами соседних дезоксинуклеотидов в местах разрыва ДНК или между двумя молекулами ДНК. Для образования этих мостиков лигазы используют энергию гидролиза пирофосфорильной связи АТФ. Один из самых распространённых коммерчески доступных ферментов — ДНК-лигаза бактериофага Т4.

ДНК – геликазы

ДНК геликазы – ферменты раскручивающие двуцепочечную спираль ДНК с затратой энергии гидролиза трифосфатов NTP. Образуемая одноцепочечная ДНК участвует в различных процессах, таких как репликация, рекомбинация, и репарация. ДНК геликазы необходимы для репликации, репарации, рекомбинации и транскрипции. Геликазы присутствуют во всех организмах.

ДНК-топоизомеразы

ДНК-топоизомеразы—ферменты, изменяющие степень сверхспиральности и тип сверхспирали. Путём одноцепочечного разрыва они создают шарнир, вокруг которого нереплецированный дуплекс ДНК, находящейся перед вилкой, может свободно вращаться. Это снимает механическое напряжение, возникающее при раскручивании двух цепей в репликативной вилке, что является необходимым условием для её непрерывного движения. Кроме того, топоизомеразы (типа II) обеспечивают разделение или образование катенанов – сцепленных кольцевых ДНК (образуются в результате репликации кольцевой ДНК), а также устранение узлов и спутанных клубков из длинной линейной ДНК. Существует два типа топоизомераз. Топоизомеразы типа I уменьшают число сверхвитков в ДНК на единицу за один акт. Эти топоизомеразы надрезают одну из двух цепей, в результате чего фланкирующие дуплексные области могут повернутся вокруг интактной цепи, и затем воссоединяют концы разрезанной цепи. Эта реакция не требует энергии АТФ, т.к. энергия фосфодиэфирной связи сохраняется благодаря тому, что тирозиновый остаток в молекуле фермента выступает то в роли акцептора, то в роли донора фосфорильного конца разрезанной цепи.

Топоизомеразы типа II вносят временные разрывы в обе комплиментарные цепи, пропускают двухцепочечный сегмент той же самой или другой молекулы ДНК через разрыв, а затем соединяют разорванные концы. В результате за один акт снимаются два положительных или отрицательных сверхвитка. Топоизомеразы типа II тоже используют тирозиновые остатки для связывания 5¢-конца каждой разорванной цепи в то время . когда другой дуплекс проходит через место разрыва.

Праймаза

Праймаза—фермент, обладающий РНК-полимеразной активностью; служит для образования РНК-праймеров, необходимых для инициации синтеза ДНК в точке ori и дальнейшем для синтеза отстающей цепи.

Из чего состоит ДНК

Из чего состоит ДНК? Кому и когда удалось найти эту молекулу в клетках людей, и прочих живых существ? В чём уникальность открытия механизма наследования и чем это обернулось для всего человечества, читайте далее в этой статье.

История

Открытие дезоксирибонуклеиновой кислоты произошло в 1869 году. И принадлежит открытие Иоганну Фридриху Мишеру. Он был биологом из Швейцарии и занимался изучением гноя. По большому счёту открытие можно назвать случайным, и сам Мишер не понял, что именно он открыл. Он назвал своё открытие нуклеином. А позже нуклеиновой кислотой, когда у неё обнаружились кислотные свойства.

Назначение этой кислоты было загадочно и неизвестно, хотя некоторые учёные уже поднимали вопрос о наследственности и существовании механизмов наследования. Современное представление о том из чего состоит цепь ДНК, было сформировано Д. Уотсоном и Ф. Криком в 1953 году. Несколько ранее, в середине тридцатых годов советские ученые А.Р. Кезеля и А.Н. Белозерский доказали, что ДНК встречается у всех живых видов. До их работы считалось, что эта молекула присутствует только в организме животных видов, а в растениях присутствует только РНК.

Тот факт, что дезоксирибонуклеиновая кислота является механизмом сохранения наследственной информации, был открыт только в 1944 году группой исследователей из Освальда. Так, совокупными усильями разных учёных мира была приоткрыта тайна эволюционного процесса и механизмов в его основе.

Использование в медицине

Открытие того из чего состоит молекула ДНК дало толчок к развитию множества новых услуг и направлений экспериментальной медицины. Благодаря новым технологиям, которые стали возможны вследствие исследования генома, сегодня почти любому доступны:

  1. Диагностика заболеваний на сверхранней стадии. Анализ позволяет выявить инфекцию, даже если заболевание находится в инкубационном периоде, и нет ни каких симптомов.
  2. Определение отцовства. Так же материнства и прочих родственных связей. При этом различные тесты можно проводить, как с участием потенциальных родителей, так и без них.
  3. Тестирование на непереносимость пищевых продуктов. Какие вещества хорошо усваиваются организмом, какие плохо или не усваиваются вовсе, что вызывает аллергические реакции – всё это расскажут результаты индивидуального исследования.
  4. Анализ этнической принадлежности – с какими народами перекрещивались далекие предки, и какие национальности формируют вас сегодня.
  5. Исследование на наличие наследственных заболеваний, в том числе и спящих, которые передаются через поколение и более.

И это только самые востребованные тесты, имеющие коммерческий интерес и полезные для простого обывателя. Если говорить о перспективах лабораторных научных исследований, то многие учёные-генетики не без энтузиазма готовятся совершить самое великое открытие за всю человеческую историю – победить болезни и саму смерть.

Строение молекулы ДНК

Дезоксирибонуклеиновая кислота состоит из двух цепочек нуклеотидов, которые объединены меж собой водородными связями и закручиваются в двойную спираль. Нуклеотиды в каждой цепи – это кирпичики, из которых складываются гены, биологическая их кодировка. Для каждого гена его место положения в цепочке и порядок нуклеотидов условно одинаков. Условно поскольку у одного гена возможны вариации, различное расположение некоторых нуклеотидов в составе гена. Но, в таком случае вместе со сменой структуры меняется и функциональность самого гена.

Путь от цепочки к хромосоме

У всех живых организмов клеточная структура и эти клетки содержат внутри себя ядро – такие клетки называются эукариоты. У бактерий и архей (древних одноклеточных организмов) такого ядра нет. Так же ядра в клетке нет у вирусов и вироидов ( инфекционных агентов, вызывающих болезни растений), но считать ли их живыми до сих пор вопрос дискуссионный.

Ядра клеток содержат в себе структуры, хранящие наследственную информацию – хромосомы. А вот сама хромосома и содержит внутри себя спиральную молекулу дезоксирибонуклеиновой кислоты, которая осуществляет функцию хранения наследственной информации.

Процесс упаковки ДНК спиралей

Спираль генов, как не казалась бы она мала, всё же очень большая для микромира. Вероятно отсюда и её спиральная форма, которая позволяет ей быть более компактной. Помимо обычной спиральности ДНК может закручиваться и в форму суперспирали. Суперспирализация – это явление, когда двойная спираль накручивается на гистоновый белок, и получается, что-то вроде биокатушки. Если закручивание в двойную спираль укорачивает цепочку генов в 5 или 6 раз, то суперспирализация доводит это сокращение до 30 раз.

Как гены связаны с ДНК

Гены это самая изученная и расшифрованная на сегодня часть ДНК. Так, каково строение генов ДНК? Фактически цепочки нуклеотидов из генов и состоят. Именно гены определяют цвет глаз, волос, форму черепа, рост, группу крови и прочие физиологические качества.

Остаётся ещё много областей генома, функциональность которых не известна. Всё, что пока о них могут сказать генетики, это то, что данные области генома не участвую (по крайней мере, напрямую) в формировании организма и его функционировании.

Хромосома: определение и описание

Считается, что хромосомы это нуклеотидные биомеханизмы, которые находятся в ядре клетки. Эти биомеханизмы являются носителями и передатчиками наследственной информации, и в свою очередь содержат в себе двойную спираль дезоксирибонуклеиновой кислоты.

Чем отличаются хромосомы друг от друга

На примере Х хромосомы, цепи нуклеотидов могут пересекаться внутри хромосомы различно:

  1. В перекрестии хромосомы, пересекаясь точно посередине друг друга.
  2. Там же, но пересекаясь не точно.

Во втором случае одни концы получившегося перекрестия будут длиннее, а другие короче. Называют такие концы длинным и коротким плечом хромосомы. Отсюда и форма Y хромосомы, у которой ярко выражены длинные плечи, а короткие настолько не велики, что схематически не указываются.

Науке известных хромосомы трёх основных форм:

  • Х хромосома, которая встречается у женщин и у мужчин.
  • Y хромосома, встречающаяся только у мужчин.
  • В хромосома изредка встречается у растений, и считается отмирающей, поскольку редко наследуется. Обычно её наличие в растении связывают с его слабостью и болезненностью.

Всего в клетке человеческого организма находится 46 парных хромосом: 22 пары «обычных» и одна пара половых (ХХ у женщин и XY у мужчин). Интересный факт – если добавить или отнять всего одну пару хромосом, человек может стать помидором или орангутангом.

Наследственные болезни

Генетический код это очень многофункциональная и противоречивая структура. С одной стороны он должен хранить информацию в неизменном эталонном виде, и эта функция проявляется возможностью ДНК восстанавливать искусственные повреждения в следующем поколении. С другой же стороны, геном может быть либо поврежден, либо измениться сам, что называют мутацией.

Мутации естественное свойство генов, и последствия этих мутация бывают, как отрицательные, так и положительные. Хоть мутации и называют поломками, но это определение спорно. Некоторые мутации в чём-то ослабляют организм – именно эти мутации и ищут во время тестирования на непереносимость пищевых продуктов.

Такие мутации создают повышенные риски возникновения, какого либо заболевания при соблюдении некоторых факторов. Соответственно, если исключить эти факторы из своей жизни, то с ними будут исключены и вероятности возникновения заболевания.

Существуют и более сложные повреждения ДНК человека, которые вызывают врождённые наследственные заболевания. Например, одна лишняя хромосома в 21 паре вызывает у человека болезнь Дауна с самого рождения.

Расшифровка ДНК

Расшифровка ДНК клетки это большое и дорогостоящее исследование всех известных человеческих генов. А после завершения исследовательского проекта «Геном человека» это порядка 25 тысяч генов. И хоть расшифровка значительно подешевела, и за прошедший десяток лет упала со ста тысяч долларов до двух тысяч на одного человека, далеко не каждому это покажется приемлемой ценой.

Для удешевления медицинских и генетических исследований всю расшифровку генома разделили тематически. Так стали появляться различные тестирования, по этому принципу они и планируются – выборка генов отвечающих за интересующие тематику исследования процессы.

Синтез РНК

Нуклеотиды (из которых формируются гены) подразделяются на 4 образующих элемента: аденин, тимин, гуанин и цитозин, которые содержат остатки фосфора, пептозы и азотистого основания. В цепочках ДНК эти нуклеотиды располагаются параллельно друг другу строгими парами: аденин только с тимином, а гуанин только с цитозином.

Необходимо подчеркнуть, что молекула дезоксирибонуклеиновой кислоты ни целиком, ни частично не может (или не должна) покинуть пределов ядра. РНК выступает в роли копии участка цепи генома, которая способна покинуть ядро, попасть в саму клетку и воздействовать на идущие в ней процессы. И происходит это удивительным образом:

  • Спираль генов раскручивается на одном из своих участков и формирует развернутые нити обоих цепочек генов.
  • К развернутому участку подходит специальный фермент-строитель и поверх этого участка синтезирует копию.
  • У копии есть одно ключевое отличие от оригинальной структуры нуклеотидов: тимин во всех парах ней заменён на урацил. Это и позволяет ей покидать пространство ядра клетки.

Синтез белка при помощи генов

Основное взаимодействие, которое происходит между генами и клеткой заключается в том, что разные гены могут заставлять клетку синтезировать различные белки с самыми неожиданными свойствами. Так группа генов участвующих в процессе старения клетки может, как заставить её стареть быстрее, так и омолаживаться. То есть, генов не только много, каждый из них может спровоцировать синтез нескольких видов белка.

Факты о ДНК

  1. Редко, но бывают случаи, когда при беременности сначала развиваются близнецы, но потом они сливаются в единого человека. У таких людей двойное ДНК.
  2. Иногда и генная криминалистика даёт сбои. Так, после пересадки костного мозга в теле пациента присутствует некоторое количество ДНК донора, и это может привести к ошибке тестирования.
  3. Самым похожим на человеческий геном ДНК обладают земляные черви.
  4. Вся цифровая информация в мире могла бы поместиться в двух граммах дезоксирибонуклеиновой кислоты.
Ссылка на основную публикацию