Митохондрии – особенности строения, функции и роль в клетке

Митохондрии – особенности строения, функции и роль в клетке

УДК: 576.3; 536.8

Библиографическая ссылка:
Косарев А.В. Митохондрия как биологический тепловой двигатель внутри клеточного конвейера // Портал научно-практических публикаций [Электронный ресурс]. URL: https://portalnp.snauka.ru/2014/07/8911 (дата обращения: 17.11.2021)

АННОТАЦИЯ

Рассмотрены морфологические и физиологические особенности клеточной органеллы митохондрии. Митохондрии являются “энергетическими станциями клетки”, участвуют в процессах клеточного дыхания и преобразуют порядка 40% энергии окисления субстратов в АТФ, в форму энергии доступную при использовании в многочисленных клеточных процессах. Принято считать, что остальные 60% выделившейся при окислении энергии превращаются в тепло и выводятся из клетки и организма. В статье высказано предположение, что, митохондрия использует энергию окисления более рационально, чем принято считать. 40% используется в процессе фосфорилирования АТФ, а 60%, выделяясь в объёме матрикса митохондрии, вызывают местный подъём температуры и как следствие давления. Повышенное давление в области матрикса сдавливает кристы и митохондрия работает как сильфонный насос. Биологический раствор выдавливается в форме гидродинамического потока из межмембранного пространства и матрикса митохондрии, обеспечивая все внутриклеточные перемещения.

Все живые организмы вне зависимости от их сложности имеют в своей основе клеточное строение. Однако “даже в случае простейшей клетки в процесс метаболизма вовлечены несколько тысяч сопряжённых химических реакций, что, безусловно, требует тонких механизмов координации и регуляции. Иными словами, здесь требуется чрезвычайно сложная функциональная организация. Если рассмотреть, как клетка выполняет сложную последовательность операций, то можно заметить, что клетка работает по тем же принципам, что и современный сборочный конвейер”. [9].

Основным источником энергии, функциональную основу жизни представляют циклические ферментативные реакции окисления и синтеза. Именно в силу цикличности этих реакций поддерживается постоянство неравновесности живой системы, формируются градиенты температур и давлений. Согласно синергетике и теории диссипативных структур наличие градиентов – необходимое условие для формирования в системе кооперативных потоков. Как пишет автор [10]: “Весьма вероятно, что через созидание диссипативных структур возникла жизнь”. К тому же на стадии окисления до 40% выделившейся энергии связывается в универсальном энергоносителе АТФ в удобный для живого вид потенциальной энергии, используемый во многих активных процессах.

Транспорт веществ внутри клетки и во всём организме обеспечивается кооперативными потоками энергии, продуцируемыми в клетках, т.к. только такие потоки способны совершать работу против сил диссипации, совершать внешнюю работу. В животной клетке действует своеобразный двигатель внутреннего сгорания, преобразующий энергию химических связей в механическую энергию гидродинамических потоков биологического раствора. Особенностью биологического двигателя является то, что производство механической работы в биоцикле сопряжено с синтезом высокомолекулярных соединений из низкомолекулярных субстратов. Так, процессы окисления, идущие с выделением тепла, сопровождаются промежуточным синтезом АТФ, а процессы синтеза белков и других высоко молекулярных соединений, идут с поглощением тепла.

Вся кооперативная энергия в организме вырабатывается на клеточном уровне и расходуется на жизнеобеспечение самой клетки и на внешнюю по отношению к клетке работу (деятельность).

Первичная метаболическая энергия (в виде АТФ и кооперативных гидродинамических потоков гиалоплазмы) производится в митохондриях и частично в цитоплазме за счёт реакций окисления. Цикличность переноса вещества вовнутрь митохондрии и клетки и обратно обеспечивается цикличностью реакций синтеза и диссоциации.

МИТОХОНДРИЯ КАК БИОЛОГИЧЕСКИЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

Условный цикл производства кооперативной энергии в животной клетке представляется следующим. По причине того, что и межклеточная жидкость, окружающая клетку, и цитоплазма, окружающая эндоплазматическую систему, состоят на 70% из воды, т.е. несжимаемой жидкости, даёт нам основание условно принять процесс в месте протекания реакций окисления и синтеза изохорическим. В местах изохорического разогрева происходит местное повышение давления, возникает перепад давления между зонами протекания реакций и остальной цитоплазмой. Органоидами эндоплазма- тической системы клетки, главным образом в которых протекают циклические процессы окисления, являются митохондрии, где синтезируется энергоноситель организма АТФ.

Митохондрии – наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью, обладающие собственной ДНК. Они являются “энергетическими станциями клетки”, участвуют в процессах клеточного дыхания и преобразуют порядка 40% энергии окисления субстратов в АТФ, в форму энергии доступную при использовании в многочисленных клеточных процессах. Принято считать, что остальные 60% выделившейся при окислении энергии превращаются в тепло и выводятся из клетки и организма. В световом микроскопе митохондрии выглядят в виде округлых (шарообразных) или удлинённых (палочкообразных) структур длиной 0,3 – 5 мкм и шириной 0,2 – 1 мкм. С помощью электронной микроскопии установлено, что митохондрии являются органеллами с двойными мембранами. Между наружной и внутренней митохондриальными мембранами расположено межмембранное пространство толщиной 10 – 20 нм. Внутренняя мембрана, имея большую площадь чем внешняя, образует многочисленные гребневидные складки – кристы. Кристы существенно увеличивают поверхность внутренней мембраны, обеспечивая значительное место для размещения дыхательной цепи. В митохондриях локализованы и ферменты, катализирующие окислительные реакции. Большая часть белков митохондрий синтезируется вне митохондрий и контролируется ядром, митохондриальная ДНК кодирует лишь немногочисленные митохондриальные белки. Наблюдались случаи перемещения митохондрий в протоплазме. Считается, что доставка АДФ, ферментов, кислорода, субстратов для реакций окисления в матрикс, и вывод из матрикса в цитоплазму углекислого газа и АТФ, последовательно через две мембраны митохондрии, осуществляется методом активного транспорта. В зависимости от функциональной активности клеток, количество митохондрий в них изменяется от сотен до десятков тысяч. [2,4,11,12].

В [5] высказано предположение, что, митохондрия использует энергию окисления, получаемую в соответствии с законом Гесса, более рационально, чем принято считать. 40% используется в процессе фосфорилирования АТФ, а 60%, выделяясь в объёме матрикса митохондрии, вызывают местный подъём температуры и как следствие давления. Повышенное давление в области матрикса сдавливает кристы, происходит сжатие митохондрии и она работает как сильфонный насос. Биологический раствор выдавливается в форме гидродинамического потока из межмембранного пространства и матрикса митохондрии.

Строение внутренней мембраны митохондрии – классический пример рациональности природы. С одной стороны это большая, развитая поверхность для течения реакций окисления и синтеза АТФ, с другой – возможность получения гидродинамического потока на принципах сильфона.

Прежде чем описать принцип производства гидродинамических потоков митохондрией отметим, что в клетке есть ещё одна структура с двойной мембраной. Это ядро. В ядре имеются многочисленные ядерные поры, соединяющие внутреннее пространство ядра с цитоплазмой и протоки, соединяющие межмембранное пространство ядра с полостью ретикулума. “Ядерная оболочка пронизана множеством расположенных упорядоченно ядерных пор округлой формы диаметром 50 – 70 нм, которые в общей сложности занимают до 25% поверхности ядра. Через ядерные поры осуществляется избирательный транспорт крупных частиц, а также обмен веществ между ядром и цитоплазмой”. [11, стр.31]. “Перинуклеарное пространство составляет единую полость с эндоплазматическим ретикулумом”. [11, стр.31 и Рис.1, стр. 18].

Схожесть морфологии митохондрии и ядра позволяет, во-первых, высказать предположение о единстве эволюционного происхождения митохондрии и клеточного ядра. Во-вторых, высказать предположение о наличии у митохондрии пор наподобие ядерных, соединяющих матрикс митохондрии с цитоплазмой и наличие проток, соединяющих межмембранное пространство митохондрии с эндоплазматическим ретикулумом.

Рис.1

Митохондрия исполняет свои функции в два этапа (два такта). На рисунке – 1 показана последовательность этапов функционирования митоходрии. Здесь цифрой -1 обозначены митохондриальные поры, соединяющие полость матрикса с цитоплазмой. Цифрой -2 обозначены протоки, соединяющие межмембранное пространство митохондрии с пространством ретикулума. На рисунке -1 слева изображён этап сжатия. В этот период в матриксе и на кристах протекают реакции окисления цикла Кребса и дыхательной цепи. Выделяющееся в результате экзотермических реакций окисления тепло вызывает местный рост давления. Давление, воздействуя на площадь крист, заставляет митохондрию сжиматься, и она из палочкообразной формы превращается в округлую, уменьшаясь в объёме. При этом гиалоплазма из межмембранного пространства через протоку поступает в эндоплазматическую сеть, вызывая все внутриклеточные перемещения. Из матрикса гиалоплазма вместе с наработанной АТФ и углекислым газом вытесняется через митохондриальные поры в цитоплазму. На втором этапе (на рисунке -1 справа) в межмембранное пространство сжатой митохондрии из ретикулума через протоку начинает подаваться гиалоплазма. Это приводит к распрямлению митохондрии и она принимает палочкообразную форму, увеличиваясь в объёме. В матриксе создаётся разрежение и в него через митохондриальные поры поступают АДФ, субстраты для реакций окисления и кислород. Митоходрия готовится к новому циклу. Когда часть митохондрий в клетке сжимается, другая часть распрямляется.

Гидродинамические потоки, вырабатываемые митохондриями, и являются движущей силой внутриклеточного сборочного конвейера, основой активного внутриклеточного транспорта. Потоки упорядоченно движутся по развитой циркуляционной системе клеточного ретикулума.

В предложенной модели отпадает необходимость в прохождении крупных молекул в матрикс через две мембраны с помощью активного трансмембранного транспорта. Замеченные активные перемещения митохондрий в цитоплазме можно объяснить следующим. Когда случается отрыв протоки митохондрии от ретикулума, то в процессе сжатия у митохондрии возникает реакция струи, которая и вызывает её перемещение. Интересно отметить и такой факт. В [12, Том1] на Рис. 5.31 изображена электронная микрофотография лизосомы, внутри которой перевариваются, захваченные ею, старые митохондрии. Все митохондрии на фото имеют округлую форму, нет ни одной палочкообразной. Это можно объяснить тем, что оторвавшаяся старая митохондрия, сработав остатки субстратов внутри матрикса, успевает принять округлую форму. А вот для принятия палочкообразной формы у неё уже нет возможности.

Окислительные реакции, протекающие в митохондриях, или реакции цикла Кребса, в которых высвобождается и запасается большая часть энергии, по праву получили название – энергетический котёл, так как основываются на тех же законах физической химии, что и технические устройства. На фотографиях, полученных с помощью электронных микроскопов, митохондрии имеют или округлую или вытянутую цилиндрическую форму. Это говорит не о различной морфологии, а о различных функциональных состояниях митохондрии.

Возникшим кооперативным гидродинамическим потоком, с одной стороны, выносятся в межклеточную жидкость продукты распада от реакций окисления и продукты синтеза в клетке, которые используются всем организмом, с другой стороны – происходят перемещения по эндоплазматической системе, обеспечивающие функционирование самой клетки. Скажем, перенос информационной РНК, сформировавшейся в ядрышке на матричном гене ДНК, к тому месту эндоплазматической сети, где в рибосоме на матричной базе информационной РНК происходит синтез соответствующего белка. Процесс кооперативного движения протекает до тех пор, пока давление в зонах повышения давления не сравняется с давлением в межклеточной жидкости. Поток из митохондрии и клетки вовне прекращается. Однако в течение кооперативного процесса в соответствующие зоны эндоплазматической системы доставлены исходные материалы для протекания реакций синтеза высокомолекулярных соединений, необходимых организму для функционирования и регенерации. Реакции синтеза – это эндотермические реакции и они протекают с затратой энергии. То есть в полостях эндоплазматической сети, где протекают реакции синтеза, снижается температура и соответственно давление, в результате чего вновь появляется перепад давлений между межклеточной жидкостью и средой эндоплазматической сети, но направленный во внутрь клетки. Вновь возникает кооперативный гидродинамический поток по эндоплазматической сети от меж- клеточной жидкости через внешнюю мембрану во внутрь клетки. При этом в клетку из межклеточной жидкости доставляется новая порция субстратов и других необходимых элементов для протекания следующего функционального цикла клетки и в частности “перезарядка” митохондрий. Как на Рис.1 справа. Поток вовнутрь продолжается до выравнивания давления и температуры внутри клетки и в межклеточной жидкости. Функциональный цикл окисления – синтеза животной клетки замкнулся.

Митохондриальный и клеточный цикл энергопревращения в целом соответствует циклу сильфонно поршневого двигателя. [7,8]. Отметим, что для возможности таких процессов мы предполагаем у митохондрии дополнительные морфологические особенности. А именно наличие двойных пор – 1 (Рис.1) как у клеточного ядра и наличие трубчатых каналов – 2 (Рис.1), соединяющих межмембранную полость с полостью ретикулума. Без таких морфологических особенностей митохондрия не сможет циклически работать. На эту мысль нас навела работа сильфонно поршневого двигателя. А конструкция сильфонно поршневого двигателя зародилась при изучении морфологии митохондрии. Отметим ещё раз, что при таких морфологических особенностях снимается проблема интенсивного пропуска субстратов через двойную мембрану митохондрии. В [7,8] показано, что митохондриальный цикл реализует принципиально иной способ преобразования тепла в работу, нежели тот, что реализуется в сегодняшних тепловых машинах. Этот, реализованный в живой природе принцип преобразования тепла в работу позволяет снять противоречие между теоретической термодинамикой и экспериментальной биофизикой. В экспериментальной биологии ещё более 50-ти лет назад установлены удивительные факты, противоречащие устоявшимся представлениям классической термодинамики. Так КПД мышечной деятельности черепахи достигает эффективности в 75-80%. [1]. При этом перепад температур в клетке не превышает долей градуса, что необъяснимо с позиций классической термодинамики.

В качестве примера опишем возможный механизм обмена между внутренней полостью ядра и цитоплазмой.

Рис. 2

Условная схема циклического обмена между полостью ядра и цитоплазмой изображена на Рис.2. Здесь: 1 и 2 – внутренняя и внешняя мембрана ядра; 3 – ядерная пора; 4 – ДНК.

Если предположить, что внутренняя мембрана ядра по площади больше внешней мембраны (как у митохондрии), то при поступлении потоков в межмембранное пространство ядра, (как на Рис.2, слева) межмембранное пространство раздувается, а внутренняя полость ядра сдавливается и содержимое ядра выдавливается через ядерные поры в цитоплазму. Этим потоком смывается сформировавшаяся в ядрышке информационная РНК и выносится к рибосомам цитоплазмы. На второй стадии (Рис.2, справа) содержимое межклеточной полости двойной ядерной оболочки, по причине циклической работы митохондрий, перетекает в митохондрии, что приводит к поступлению в полость ядра из цитоплазмы мономеров для формирования РНК или ДНК. Округлая форма и общий объём ядра за цикл не меняется по причине меньшей по площади поверхности внешней ядерной мембраны. Происходит только локальное перетекание гиалоплазмы. В случае с ядром разница в площадях внешней и внутренней мембран не приводит к изменению внешней формы как у митохондрии по причине того, что с одной стороны у ядра имеется большое количество пор, с другой – внутренняя мембрана ядра не имеет кристов. В [3] показана решающая роль митохондрий в сократительных процессах миоцитов. В [8] описана конструкция теплового двигателя, работающего на тех же физико-химических принципах, что и митохондрия.

ЗАКЛЮЧЕНИЕ

Необходимо проведение исследований митохондрий с помощью электронного микроскопа для выявления митохондриальных пор и проток, соединяющих межмембранное пространство митохондрии с полостью эндоплазматического ретикулума, как у клеточного ядра. В случае их обнаружения изменится, принятая на сегодня картина обмена между матриксом митохондрии и цитоплазмой. Будет подтверждён принципиально новый биологический принцип преобразования тепла в работу. Получит объяснение высокий КПД мышечной деятельности, вытекающий из опытов Хилла и противоречащий классической термодинамике.

ЛИТЕРАТУРА

1. Антонов В.Ф. и др. Биофизика. – М.: “Владос”, 2003г., 288с.

2. Бышевский А.Ш., Терсенёв О.А. Биохимия для врача. Екатеринбург. Изд-во “Уральский рабочий”, 1994г., 384с.

3. Долгов М.А., Косарев А.В. Взаимодействие эластического и гидродинамического компонентов в процессе сокращения и расслабления мышечного волокна. //Вестник Оренбургского гос. у-та №12(79), 2007г., с. 106-112. http://vestnik.osu.ru/2007_12/21.pdf.

4. Каменский А.А. и др. Биология. – М.: ЭКСМО, 2003г., 640с.

5. Косарев А.В. Биодинамика, механизм и условия производства кооперативных потоков энергии в биологических структурах. // Вестник Оренбургского гос. у-та. №6, 2004г., – с. 93-99. http://vestnik.osu.ru/2004_6/17.pdf.

6. Косарев А.В. О морфологических и функциональных особенностях митохондрии. //Материалы Всероссийской научно – технической конференции “Современные проблемы математики и естествознания”. Нижний Новгород: Нижегородский научный и информационно-методический центр “Диалог” , 2009г., с.6-7.

7. Косарев А.В. Монография “Динамика эволюции неравновесных диссипативных сред”. Издание второе, переработанное и дополненное. – Из-во: LAMBERT Academic Publishing, г. Саарбрюккен, Германия, 2013г., 354с.

8. Косарев А.В. Тепловой двигатель на новом термодинамическом принципе преобразования тепла в работу и его работа на естественных перепадах температур возобновляемых источников энергии.

9. Николис Г., Пригожин И. Самоорганизация в неравновесных системах. – М.: “Мир”, 1979г., 512с.

10. Самойлов В.О. Медицинская биофизика. – Санкт-Петербург: “СпецЛит”, 2004г., 496с.

11. Сапин и др. Анатомия человека. Т.1 –М.: “ОНИКС”, 2002г., 464с.

12. Тейлор Д. и др. Биология. / Тейлор Д., Грин Н., Стаут У. /Пер. с англ. Ю.Л. Амченкова, М.Г. Дуниной и др.). – М.: “Мир”. Том 1, 2001г., 454с. Том 2, 2002г., 436с. Том 3, 2002г., 451с.

Количество просмотров публикации: –

Связь с автором публикации (комментарии/рецензии к публикации)

Оставить комментарий

Вы должны авторизоваться, чтобы оставить комментарий.

Митохондрии: строение и функции

Митохондрии – двомембранний органоид эукариотической клетки. Они являются важными частями наших клеток, поскольку принимают пищу и производят энергию, которую могут использовать клетки.

Животные и растения состоят из многих сложных клеток, которые называются эукариотические клетки. Внутри этих клеток расположены структуры, выполняющие особые функции для клетки, – органеллы. Органеллы, отвечающие за выработку энергии для клетки, – это и эсть митохондрии.

Различные типы клеток имеют разное количество митохондрий. Некоторые простые клетки содержат только один-два митохондрии. Однако сложные животные клетки, которым нужно много энергии, например, мышечные, могут иметь тысячи митохондрий.

Основная функция митохондрий – производить энергию для клетки. Клетки используют специальную молекулу для получения энергии под названием АТФ (аденозинтрифосфат). АТФ для клетки производится внутри митохондрий.

То есть энергетическая функция митохондрий интегрируется с окисления органических соединений, что происходит в матриксе, благодаря чему митохондрии называют дыхательным центром клеток; синтеза АТФ, что осуществляется на кристах, благодаря чему митохондрии называют энергетическими станциями клеток.

Митохондрии вырабатывают энергию в процессе клеточного дыхания. Митохондрии принимают молекулы пищи в виде углеводов и сочетают их с кислородом для получения АТФ. Они используют ферменты для получения правильной химической реакции.

Кроме выработки энергии, митохондрии выполняют и другие функции для клетки, включая клеточный метаболизм, выработки тепла, контроль концентрации кальция и выработки некоторых стероидных гормонов. А о других гормонах можно узнать благодаря онлайн уроку за 8 класс по биологии на тему “Принципы регуляции. Эндокринная система”.

Митохондрии имеют четкую структуру, которая помогает им производить энергию.

Внешняя мембрана. Защищенная гладкой внешней мембраной, которая имеет форму от круглой палочки до длинного стержня.

Внутренняя мембрана. В отличие от других органелл в клетке, митохондрии также имеют внутреннюю мембрану. Она имеет множество складок и выполняет ряд функций, чтобы помочь сделать энергию.

Кристи. Это складки на внутренней мембране. Наличие всех этих складок способствует увеличению площади поверхности внутренней мембраны.

Матрикс. Это пространство внутри внутренней мембраны. Большинство белков митохондрий находятся в матриксе. Матрикс также содержит рибосомы и ДНК, которые являются уникальными для митохондрий.

Белок синтезирующей системы. В митохондрий есть своя белоксинтезирующая система – ДНК, РНК и рибосомы. Генетический аппарат имеет вид кольцевой молекулы – нуклеотида, точно как у бактерий. Часть необходимых белков митохондрии синтезируют сами, а часть получают из цитоплазмы, поскольку эти белки кодируются ядерными генами.

Интересные факты о митохондриях:

Они могут быстро менять форму и перемещаться по клетке, когда это нужно.

Когда клетке требуется больше энергии, митохондрии могут размножаться, увеличиваясь, а затем делясь. Если клетке нужно меньше энергии, некоторые митохондрии погибнут или станут неактивными.

Митохондрии очень похожи на некоторые бактерии. По этой причине некоторые ученые считают, что сначала они были бактериями, которые поглощались более сложными клетками.

Различные митохондрии вырабатывают различные белки. Некоторые митохондрии могут производить сотни различных белков, которые используются для различных функций.

Кроме энергии в виде АТФ, они также производят небольшие количества углекислого газа.

Нужно выполнить домашнее задание по биологии в учебнике или рабочей тетради? Ищите все готовое в разделе “ГДЗ и решебниики по биологии за 8 класс”.

Митохондрии – особенности строения, функции и роль в клетке

Митохондрии — органеллы энергообеспечения метаболических процесов в клетке. Размеры их варьируют от 0,5 до 5-7 мкм, количество в клетке составляет от 50 до 1000 и более. В гиалоплазме митохондрии распределены обычно диффузно, однако в специализированных клетках сосредоточены в тех участках, где имеется наибольшая потребность в энергии. Например, в мышечных клетках и симпластах большие количества митохондрий сосредоточены вдоль рабочих элементов — сократительных фибрилл. В клетках, функции которых сопряжены с особо высокими энергозатратами, митохондрии образуют множественные контакты, объединяясь в сеть, или кластеры (кардиомиоциты и симпласты скелетной мышечной ткани).

В клетке митохондрии выполняют функцию дыхания. Клеточное дыхание — это последовательность реакций, с помощью которых клетка использует энергию связей органических молекул для синтеза макроэргических соединений типа АТФ. Образующиеся внутри митохондрии молекулы АТФ переносятся наружу, обмениваясь на молекулы АДФ, находящиеся вне митохондрии. В живой клетке митохондрии могут передвигаться с помощью элементов цитоскелета.

На ультрамикроскопическом уровне стенка митохондрии состоит из двух мембран — наружной и внутренней. Наружная мембрана имеет относительно ровную поверхность, внутренняя — образует направленные в центр складки, или кристы. Между наружной и внутренней мембранами возникает неширокое (около 15 нм) пространство, которое называется наружной камерой митохондрии; внутренняя мембрана ограничивает внутреннюю камеру. Содержимое наружной и внутренней камер митохондрии различно, и так же, как и сами мембраны, существенно отличается не только по рельефу поверхности, но и по ряду биохимических и функциональных признаков. Наружная мембрана по химическому составу и свойствам близка к другим внутриклеточным мембранам и плазмолемме.

Строение митохондрий

Ее характеризует высокая проницаемость, благодаря наличию гидрофильных белковых каналов. Эта мембрана имеет в своем составе рецепторные комплексы, распознающие и связывающие вещества, поступающие в митохондрию. Ферментный спектр наружной мембраны небогат: это ферменты метаболизма жирных кислот, фосфолипидов, липидов и др. Главной функцией наружной мембраны митохондрии является отграничение органеллы от гиалоплазмы и транспорт необходимых для осуществления клеточного дыхания субстратов.

Внутренняя мембрана митохондрий в большинстве клеток тканей различных органов формирует кристы в виде пластин (ламеллярные кристы), что значительно увеличивает площадь поверхности внутренней мембраны. В последней 20-25 % всех белковых молекул составляют ферменты дыхательной цепи и окислительного фосфорилирования. В эндокринных клетках надпочечников и половых желез митохондрии участвуют в синтезе стероидных гормонов. В этих клетках митохондрии имеют кристы в виде трубочек (тубул), упорядоченно расположенных в определенном направлении. Поэтому кристы митохондрий в стероидпродуцирующих клетках названных органов именуются тубулярными.

Матрикс митохондрии, или содержимое внутренней камеры, представляет собой гелеобразную структуру, содержащую около 50 % белков. Осмиофильные тельца, описанные при электронной микроскопии, — это резервы кальция. Матрикс содержит ферменты цикла лимонной кислоты, катализирующие окисление жирных кислот, синтез рибосом, ферменты, участвующие в синтезе РНК и ДНК. Общее число ферментов превышает 40.

Помимо ферментов, матрикс митохондрии содержит митохондриальную ДНК (митДНК) и митохондриальные рибосомы. Молекула митДНК имеет кольцевидную форму. Возможности внутримитохондриального белкового синтеза ограничены — здесь синтезируются транспортные белки митохондриальных мембран и некоторые ферментные белки, участвующие в фосфорилировании АДФ. Все остальные белки митохондрии кодируются ядерной ДНК, и их синтез осуществляется в гиалоплазме, и в дальнейшем они транспортируются в митохондрию. Жизненный цикл митохондрий в клетке короткий, поэтому природа наделила их двойственной системой воспроизводства — помимо деления материнской митохондрии, возможно образование нескольких дочерних органелл путем почкования.

Научная электронная библиотека

§ 3.1.4. Строение клетки

Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).

Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения

Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.

1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.

Повреждение наружной оболочки приводит к гибели клетки (цитолиз).

2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране

участие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).

Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.

Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.

3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).

транспортировка питательных веществ и утилизация продуктов обмена клетки;

буферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;

поддержание тургора (упругость) клетки;

все биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.

4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).

Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления

Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.

При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери

Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.

В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.

В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.

Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.

– хранение генетической информации;

– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.

4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.

Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.

5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.

Функция рибосом: обеспечение биосинтеза белка.

6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).

Функции эндоплазматической сети:

– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;

– транспортировка продуктов синтеза ко всем частям клетки.

Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).

7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).

Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент

Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1

При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:

АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.

Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.

АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].

Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).

Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).

Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!

8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.

Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.

9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).

Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.

10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:

Пластиды бывают трех типов:

1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.

2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.

3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).

Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.

11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.

Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:

– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);

– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;

– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).

Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).

Более общая классификация клеток представлена на рис. 3.16.

Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.

Строение и функции митохондрий. Сходства и различия с хлоропластом

Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.

Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.

Особенности строения

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана. Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин — белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство. Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Внутренняя мембрана. Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений. В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление. Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Функции в клетке

  1. Основная функция митохондрий – образование молекул АТФ.
  2. Депонирование ионов Кальция.
  3. Участие в обмене воды.
  4. Синтез предшественников стероидных гормонов.

Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.

Таблица: строение и функции митохондрий (кратко)
Структурные элементыСтроениеФункции
Наружная мембранаГладкая оболочка, построена из липидов и белковОтграничивает внутреннее содержимое от цитоплазмы
Межмембранное пространствоНаходятся ионы водорода, белки, микромолекулыСоздает протонный градиент
Внутренняя мембранаОбразует выпячивания – кристы, содержит белковые транспортные системыПеренос макромолекул, поддержание протонного градиента
МатриксМесто расположения ферментов цикла Кребса, ДНК, РНК, рибосомАэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
РибосомыОбъединённые две субъединицыСинтез белка

Сходство митохондрий и хлоропластов

Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

И митохондрии и хлоропласты могут делиться с помощью перетяжки.

Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

Опишем кратко сходства и различия:

  • Являются двомембранными органеллами;
  • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
  • обладают собственным геномом;
  • способны синтезировать белки и энергию.

Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.

Митохондрии – особенности строения, функции и роль в клетке

Митохондрии – это органеллы размером с бактерию (около 1 х 2 мкм). Они найдены в большом количестве почти во всех эукариотических клетках. Обычно в клетке содержится около 2000 митохондрий, общий объем которых составляет до 25% от общего объема клетки. Митохондрия ограничена двумя мембранами – гладкой внешней и складчатой внутренней , имеющей очень большую поверхность. Складки внутренней мембраны глубоко входят в матрикс митохондрий, образуя поперечный перегородки – кристы . Пространство между внешней и внутренней мембранами обычно называют межмембранным пространством .

Различный типы клеток отличаются друг от друга как по количеству и форме митохондрий, так и по количеству крист. Особенно много крист имеют митохондрии в тканях с активными окислительными процессами, например в сердечной мышце. Вариации митохондрий по форме, что зависит от их функционального состояния, могут наблюдаться и в тканях одного типа. Митохондрии — изменчивые и пластичные органеллы.

Мембраны митохондрий содержат интегральные мембранные белки. Во внешнюю мембрану входят порины , которые образуют поры и делают мембраны проницаемыми для веществ с молекулярной массой до 10 кДа (см. рис. 223). Внутренняя же мембрана митохондрий непроницаема для большинства молекул; исключение составляют О 2 , СО 2 , Н 2 0. Внутренняя мембрана митохондрий характеризуется необычно высоким содержанием белков (75%). В их число входят транспортные белки-переносчики (см. рис. 215), ферменты, компоненты дыхательной цепи и АТФ-синтаза . Кроме того, в ней содержится необычный фосфолипид кардиолипин (см. с. 56). Матрикс также обогащен белками, особенно ферментами цитратного цикла.

Б. Метаболические функции

Митохондрии являются «силовой станцией» клетки, поскольку за счет окислительной деградации питательных веществ в них синтезируется большая часть необходимого клетке АТФ (АТР). В митохондриях локализованы следующие метаболические процессы: превращение пирувата в ацетил-КоА, катализируемое пируватдегидрогеназным комплексом: цитратный цикл; дыхательная цепь , сопряженная с синтезом АТФ (сочетание этих процессов носит название «окислительное фосфорилирование»); расщепление жирных кислот путем β-окисления и частично цикл мочевины . Митохондрии также поставляют клетке продукты промежуточного метаболизма и действуют наряду с ЭР как депо ионов кальция , которое с помощью ионных насосов поддерживает концентрацию Са 2+ в цитоплазме на постоянном низком уровне (ниже 1 мкмоль/л).

Главной функцией митохондрий является захват богатых энергией субстратов (жирные кислоты, пируват, углеродный скелет аминокислот) из цитоплазмы и их окислительное расщепление с образованием СО 2 и Н 2 О, сопряженное с синтезом АТФ.

Реакции цитратного цикла приводят к полному окислению углеродсодержащих соединений (СО 2 ) и образованию восстановительных эквивалентов, главным образом в виде восстановленных коферментов. Большинство этих процессов протекают в матриксе. Ферменты дыхательной цепи , которые реокисляют восстановленные коферменты, локализованы во внутренней мембране митохондрий. В качестве доноров электронов для восстановления кислорода и образования воды используются НАДН и связанный с ферментом ФАДН 2 . Эта высоко экзергоническая реакция является многоступенчатой и сопряжена с переносом протонов (Н + ) через внутреннюю мембрану из матрикса в межмембранное пространство (см. рис. 143). В результате на внутренней мембране создается электрохимический градиент (см. рис. 129). В митохондриях электрохимический градиент используется для синтеза АТФ из АДФ (ADP) и неорганического фосфата (Р i ) при катализе АТФ-синтазой. Электрохимический градиент является также движущей силой ряда транспортных систем (см. рис. 215).

Строение и функции митохондрий, пластид, клеточного центра, органоидов движения

Урок 15. Введение в общую биологию и экологию 9 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока “Строение и функции митохондрий, пластид, клеточного центра, органоидов движения”

Все эукариотические клетки содержат – митохондрии, это энергетические станции клеток. Митохондрия покрыта двумя мембранами: наружной и внутренней.

Наружная мембрана гладкая. Она состоит из липидов с вкраплениями белков. Основная её функция — отграничение митохондрии от цитоплазмы.

А внутренняя мембрана имеет многочисленные складки и выступы — кристы, существенно увеличивающие площадь её поверхности.

Внутриклеточное пространство митохондрий заполнено розовым веществом – матриксом.

В матриксе митохондрии, находятся ферменты, необходимые для многих биохимических реакций.

Крупные молекулы могут пересекать наружную мембрану только через транспортные белки митохондриальных мембран.

Внутренняя мембрана митохондрии в отличие от внешней не имеет специальных отверстий для транспорта мелких молекул и ионов. На стороне мембраны, обращённой к матриксу, располагаются особые молекулы АТФ-синтазы (это группа ферментов).

Благодаря АТФ-синтезам происходит синтез АТФ (аденозин трифосфорной кислоты).

Перед нами химическая структура АТФ. В ней имеется азотистое основание аденин. Углевод – рибоза. И три…именно три остатка фосфорной кислоты, фосфатные связи которых богаты энергией. При их разрыве эта энергия высвобождается.

Рассмотрим подробнее синтез АТФ.

В АТФ-синтазу с внешней стороны мембраны митохондрии проходят протоны (ионы водорода). При прохождении 3х ионов в матрикс высвобождается достаточно энергии. Полученная энергия пойдёт на синтез 1 молекулы АТФ.

То есть к АДФ (аденозин дифосфорной кислоте) присоединится фосфат и получится молекула АТФ. (аденозин трифосфорная кислота).

Когда концентрация протонов по обе стороны мембраны становится одинаковая процесс синтеза АТФ прекращается. Синтезированные молекулы АТФ переносятся в разные части клетки, при помощи белков переносчиков.

Благодаря синтезу АТФ, митохондрии называют энергетическими органоидами клетки.

В матриксе митохондрии находится собственный белоксинтезирующий аппарат митохондрии, РНК и митохондриальная ДНК. Собственная ДНК митохондрий представляет собой замкнутую кольцевую двуспиральную молекулу.

Также митохондрии могут самостоятельно размножаться. Например, перед делением клетки, число митохондрий возрастает настолько, чтобы их хватило на две клетки. Таким образом, митохондрии всегда образуются от митохондрий. Формы митохондрий могут быть различными: овальными, круглыми, палочковидными.

Количество их в клетке также неодинаково. Очень много митохондрий в клетках, где велики энергетические затраты. Например, в активно работающих тканях – клетках крыльев птиц и клетках печени.

Митохондрии содержатся во всех эукариотических клетках. А вот в прокариотических их нет. Этот факт, а также наличие в митохондриях ДНК позволили учёным полагать, что ранее митохондрии были свободноживущими существами.

Ещё в 1921 г. русский ботаник Борис Михайлович Козо-Полянский высказал мнение, о том, что клетка — это симбиотрофная система, в которой сожительствует несколько организмов.

В настоящее время эндосимбиотическая теория происхождения митохондрий и хлоропластов является общепринятой. Согласно этой теории, митохондрии — это в прошлом самостоятельные организмы. Которые затем за многие миллионы лет превратились в важнейшие энергетические станции клеток.

Таким образом, главной функцией митохондрий является захват богатых энергией субстратов (жирные кислоты, углеродный скелет аминокислот) из цитоплазмы и их окислительное расщепление с образованием углекислого газа и воды, связанное с синтезом АТФ.

Растительные клетки помимо митохондрий содержат пластиды – это полуавтономные органеллы. То есть органеллы, которые отчасти не зависят от ядра.

Пластиды подразделяют на лейкопласты, хлоропласты и хромопласты.

Лейкопла́сты − это бесцветные сферические пластиды в клетках растений.

Они образуются в запасающих тканях (клубнях, корневищах), клетках эпидермы и других частях растений.

Лейкопласты содержат ферменты, с помощью которых из глюкозы, образованной в процессе фотосинтеза, синтезируется крахмал.

Лейкопласты подразделяются на амилопласты – это пластиды, которые накапливают крахмал.

Олеопласты, которые накапливают жиры.

Протеинопласты накапливают белки.

А также этиопласты – это лейкопласты, на которые не попал солнечный свет.

Все типы пластид могут превращаться друг в друга.

Например, на свету в лейкопластах образуется зелёный пигмент хлорофилл, и они тем самым превращаются в хлоропласты. Вот почему на свету клубни картофеля зеленеют.

Хлоропласты, пожалуй, самые главные органоиды растений. Так как основная функция зелёных пластид — это фотосинтез.

Фотосинтез — это синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света. В результате, которого образуются органические вещества и кислород.

У высших растений органом фотосинтеза является лист, а органоидами фотосинтеза — хлоропласты. Хлоропласты, как и митохондрии, имеют двумембранное строение. Между складками мембран находятся стопки связанных с ней пузырьков.

Каждая отдельная стопка таких пузырьков называется граной. В одном хлоропласте может быть до 50 гран, которые расположены таким образом, чтобы на каждую попадал свет.

Граны состоят из тилакоидов. Мембрана тилакоида собственно и является тем местом, где протекают светозависимые реакции фотосинтеза. Эти реакции идут при участии фотосинтетических пигментов хлорофиллов, расположенных непосредственно на мембране тилакода. Так как именно хлорофилл обладает способностью поглощать лучи света.

Хлорофилл окрашивает хлоропласты растений в зелёный цвет. Он необходим для превращения энергии света в химическую энергию АТФ. Энергия, которая заключена в молекуле АТФ, необходима для синтеза углеводов.

Синтез органических веществ осуществляется во внутреннем пространстве хлоропластов между гранами.

Например, для того чтобы в клубнях картофеля образовался крахмал. В растение через корневую систему поступает вода. По стеблю она приходит в клетки листьев, а затем и в хлоропласты. Одновременно через устьица в клетку поступает углекислый газ. Из воды и углекислого газа под действием солнечного света образуется органическое вещество глюкоза. Полученную в процессе фотосинтеза глюкозу хранить достаточно сложно, она легко выходит из клетки. Поэтому растения хранят её в виде крахмала. Из хлоропластов крахмал перемещается по сосудам растения, а затем поступает в клубни картофеля и используется клетками, которые не содержат хлорофилл.

Хлоропласты созданы для того, чтобы ловить энергию солнечного света… И если посмотреть под микроскоп на срез листа, то можно увидеть, как в его клетках зелёные хлоропласты движутся в ту сторону где свет наиболее ярок.

Хлоропласты имеют зелёную окраску, так как хлорофиллы поглощают красный и сине-фиолетовый свет, а отражают зелёный.

Благодаря хлоропластам и фотосинтезу из атмосферы ежегодно поглощаются миллиарды тонн углекислого газа и выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ.

Активный фотосинтез ведёт к довольно быстрому старению листьев и в конце концов к их отмиранию. Видимый признак старения листа – покраснение или пожелтение, оно связанно с деградацией хлоропластов, разрушением хлорофилла и накоплением пигментов каротиноидов.

Каротиноиды это комбинация пигментов, которые содержатся в хромопластах.

Хромопласты − (от греч. «хромо» – цвет, краска) – пластиды с желтой, оранжевой и красной окраской.

Пигменты, так же, как и хлорофилл, участвуют в фотосинтезе, однако они улавливают ту часть солнечного спектра, которая осталась вне поля зрения хлорофилла.

Кроме того, пигменты, расположенные в хромопластах, выполняют роль светофильтров, защищающих чувствительные к свету ферменты от разрушения.

Хромопласты наиболее характерны для клеток околоцветников и плодов многих растений. Яркая окраска цветков привлекает насекомых-опылителей. А яркая окраска плодов привлекает животных и птиц, благодаря которым распространяются семена.

Зелёные хлоропласты могут терять хлорофилл и превращаться в хромопласты. Этот процесс мы наблюдает при созревании плодов.

Также в цитоплазме всех клеток вблизи ядра располагается клеточный центр.

Клеточный центр — это немембранный органоид, главный центр организации микротрубочек и регулятор хода клеточного цикла в клетках эукариот.

У многих животных и низших растений клеточный центр содержит пару центриолей.

Центриоли – это цилиндрические структуры, расположенные под прямым углом друг к другу.

Каждая центриоль состоит из девяти триплетов – состоящих из трёх частей микротрубочек, которые расположены по кругу.

Микротрубочки играют ключевую роль во внутриклеточном транспорте (служат «рельсами», по которым перемещаются молекулярные моторы- белки-кинезины.

Кинезин перемещает вдоль микротрубочек мембранные пузырьки (везикулы) и другие органоиды.

Клеточный центр играет важную роль в формировании цитоскелета, поддерживающего форму клеток.

Очень велика роль клеточного центра при делении клеток, когда центриоли расходятся к полюсам делящейся клетки и образуют веретено деления. Это веретенообразная система микротрубочек. Микротрубочки веретена, присоединяются к белковым структурам хроматид в области центромер и обеспечивают движение хромосом по направлению к полюсам.

Некоторые клетки способны к движению. Например, одноклеточные организмы инфузория туфелька и эвглена зелёная перемещаются при помощи особых органоидов движения – ресничек и жгутиков.

Несмотря на то, что реснички отличаются по размерам от жгутиков, они имеют общее строение.

Органоиды движения образованы такими же микротрубочками, как и центриоли клеточного центра.

Жгутики и реснички крепятся к цитоплазме клеток благодаря базальным тельцам. Рядом с базальным тельцем располагается особая органелла, которая обеспечивает выработку энергии для жгутика.

Органоиды движения встречаются и у многоклеточных организмов. Например, эпителий бронхов человека покрыт множеством ресничек. Реснички двигаются одновременно, образуя своеобразные волны. Так они очищают бронхи от инородных частиц и пыли.

При рассмотрении клетки под микроскопом в её цитоплазме можно обнаружить различные включения, гранулы, содержащие питательные вещества для клетки. Клеточные включения — это образования, которые могут появляться и исчезать.

Ими могут быть капли жира, гранулы крахмала, кристаллы солей и другие.

Ссылка на основную публикацию