Дыхание растений – особенности, характеристика и значение процесса

Bio-Lessons

Образовательный сайт по биологии

Дыхание растений

Растения, как все живые организмы, в процессе дыхания поглощают кислород и выделяют углекислый газ. Газообмен у них происходит через устьица на листьях, а также через чечевички на стеблях и трещины в коре. Внутри тканей кислород следует по межклетникам, потом проникает в клетки. Доступ кислорода ко всем органам растения — одно из основных условий жизни. При плохой обработке почвы или на переувлажненных почвах корням растений не хватает воздуха и, следовательно, кислорода. Поэтому при застое воды на отдельных участках поля большинство растений погибает. Ведь растения, так же как люди или животные, умирают без кислорода. Но у них потребность в кислороде меньше, чем у животных, и у них нет таких сложных органов дыхания.

Дыхание — это поступление в организм кислорода и удаление углекислого газа, а также использование кислорода для окисления органических веществ с освобождением энергии (Рис.1).

Рис.1 Сравнение дыхания и фотосинтеза растений

ДыханиеПризнакФотосинтез
Кислород1.Поглощаемый газУглекислый газ
Углекислый газ2.Выделяемый газКислород
Чечевички, устьица, кожица семян и т.д.3.Пути газообменаТолько через устьица
Во всех живых клетках4.В каких клетках происходитТолько в зеленых клетках, содержащих хлорофилл
Получение и использование энергии из питательных веществ на рост и развитие5.Роль в жизни растенийЗапасание энергии света в виде питательных веществ

Во время дыхания часть органических веществ расходуется. Например, прорастающее зерно теряет 3-10% сухого вещества. Чем более неблагоприятна oкружающая среда для прорастания, тем больше требуется питательных веществ и тем интенсивнее дыхание проростка. Энергия, выделяемая во время дыхания, затрачивается на рост и развитие органов растений. Подтвердим опытным путем поглощение прорастающим семенем кислорода и выделение им углекислого газа (Рис.2).

Рис.2 Поглощение кислорода и выделение углекислого газа прорастающими семенами (1-влажные семена, 2-сухие семена)

Возьмем 2 широкогорлые стеклянные банки и в одну из них положим проросшие семена гороха (20-30 шт.). В другую — столько же сухих, непроросших семян гороха. Банки плотно закрываем крышками и ставим в теплое место. Через неделю в банку с сухими семенами опустим горящую свечу. Свеча не потухнет, будет продолжать гореть. Поскольку дыхание сухих семян замедленное, за неделю они не успели поглотить весь кислород из воздуха в банке.

В банке с проросшими семенами свеча сразу же погаснет. Почему? Проросшие семена дышат интенсивно, поэтому они поглотили весь кислород в банке и насытили воздух углекислым газом. Во время набухания и прорастания семян и дальнейшего развития растений дыхание в тканях усиливается. Межклеточные воздушные пространства в тканях растений облегчают движение газов.

Влияние различных условий на дыхание растений
Интенсивность дыхания у разных частей растения неодинакова. Наиболее высока она у молодых быстро растущих органов и тканей. С окончанием периода активного роста растений дыхание их тканей ослабевает. Активнее дышат высокогорные и светолюбивые растения (по сравнению с теневыносливыми). Дыхание растений усиливается с повышением температуры, когда речь идет о потеплении. Но в зной оно ослабевает, а при 45-50°С почти прекращается. Таким образом, на дыхание растений влияют различные факторы.

1. Влияние воды. Сухие семена (10-12% влаги) дышат очень слабо. Если содержание влаги в семенах достигает 33%, то дыхание усиливается, расход питательных веществ увеличивается, и семена начинают прорастать. Поэтому при хранении в зернохранилищах влажность зерна не должна превышать 12-14%. Только в таких условиях семена могут долго храниться.

2. Влияние температуры. Чем выше температура окружающей среды, тем интенсивнее дышат семена. Даже зимой при температуре -20-25°С дыхание растений не прекращается, оно лишь замедляется. Дыхание семян прекращается при температуре +50°С. Зимой в клубнях картофеля, хранящегося при низкой температуре, дыхание замедляется.

3.Влияние света. При наличии достаточной освещенности дыхание растений ускоряется. Теневыносливые растения дышат слабее светолюбивых. Если поместить молодые проростки в темное место, их дыхание немного замедлится.

4.Влияние воздуха. Всему живому на Земле, кроме некоторых бактерий, необходим кислород. Мы дышим воздухом, в котором кислород находится в определенном соотношении с другими газами (азот, инертные газы, углекислый газ).

Когда в воздух попадают отходы промышленного производства, это соотношение изменяется, что может оказаться губительным для растений, животных и человека.
В последнее время можно часто слышать выражения озоновые дыры, и парниковый эффект. Эти явления связаны с состоянием воздушной оболочки Земли. Накопление вредных веществ в атмосфере оказывает отрицательное воздействие на все живое, и на растения в том числе. Их дыхание замедляется.

Какие же вещества загрязняют воздух? Вот главные из них:
1.Углекислый газ, выделяемый всеми живыми организмами, обитающими на Земле.
2.Отходы производства и газы, выделяемые заводами и фабриками, прежде всего угарный газ, зола, сажа, пыль, копоть, дым.
3.Выхлопные газы автомобилей.
4.Ядовитые газы, выделяемые синтетическими веществами, созданными химическим путем.
5.Пылевые частицы ядохимикатов, используемых в сельском хозяйстве.

Рост и развитие растений в условиях загрязненной атмосферы замедляются.
Они быстро подвергаются различным вредным воздействиям. Таким образом, воздух необходим не только для надземных органов растений, но и для корней, находящихся в почве. Если не будет обеспечен достаточный приток воздуха к корням, их дыхание замедлится, и они погибнут. Если корни постоянно покрыты водой, они загниют. Корни обеспечивают всю надземную часть растения питательными веществами и водой. Без них само растение неминуемо погибнет.

Роль зеленых растений:
1.Создание органических веществ.
2.Поступление кислорода в атмосферу
3.Поддержание постоянного содержания углекислого газа.
4.Участие в создании почв.

Зеленые растения запасают энергию космического светила — Солнца в виде органических веществ, используемых живыми существами нашей планеты.

Дыхание — это процесс, происходящий во всех живых организмах: поглощение кислорода и выделение углекислого газа. Кислород используется для окисления органических веществ, чтобы извлечь из них энергию. Растения запасают энергию солнечного света в виде органических веществ в ходе фотосинтеза и используют эту энергию, окисляя вещества в ходе дыхания, В целом, растения интенсивнее фотосинтезируют, чем дышат.

Фотосинтез. Воздушное питание.

ДЫХАНИЕ РАСТЕНИЙ

Сущность процесса дыхания

Дыхание — это процесс, свойственный всем живым организмам. Оно присуще любому органу, любой ткани, каждой клетке, которые дышат в течение всей жизни.

Дыхание представляет собой окислительный распад органических веществ, в первую очередь углеводов, в результате которого высвобождается энергия и образуются С02 и Н20:

Вещество, распадающееся в процессе дыхания, получило название дыхательного субстрата.

По суммарному уравнению дыхание ничем не отличается от горения. Принципиальное отличие дыхания состоит в том, что это многоступенчатый ферментативный процесс. Постепенность окисления обеспечивает образование большого количества промежуточных продуктов, которые используются в качестве полуфабрикатов для различных биосинтезов, а также выделение отдельных порций энергии и возможность их запасания в аденозинтрифосфате (АТФ). В этом и состоит основное физиологическое значение процесса дыхания.

Основным способом окисления при дыхании является дегидрирование, т. е. отщепление водорода. Этот процесс проходит при участии ферментов дегидрогеназ, небелковыми компонентами которых являются НАД (никотинамидадениндинуклеотид) и ФАД (флавинадениндинуклеотид), называемые коферментами. НАД и ФАД способны к обратимым окислительно-восстановительным реакциям, т. е. принимая водород и электроны от окисляемого субстрата, коферменты восстанавливаются. При дальнейшем транспорте водорода и электронов на кислород энергия запасается в АТФ. На конечном этапе функционируют оксидазы, активирующие кислород. Наиболее важной из них является цитохромоксидаза.

Процесс дыхания у разных растений и их органов неодинаков, и его сравнивают по интенсивности, т. е. по количеству выделенного С02 на единицу массы в единицу времени (мг/(г-ч)). Интенсивность дыхания главным образом зависит от потребностей организма в продуктах дыхания и в первую очередь в АТФ. Поэтому высокой интенсивностью дыхания отличаются прорастающие семена, молодые, активно растущие растения, цветки.

Химизм и энергетика дыхания

Основной путь окисления углеводов в растении состоит из двух стадий — анаэробной и аэробной.

Анаэробная стадия дыханиягликолиз (рис. 1.16) — происходит в гиалоплазме, где предварительно активированная глюкоза расщепляется и частично окисляется до пировиноградной кислоты (ПВК). На активирование глюкозы затрачивается энергия двух молекул АТФ. Активированная глюкоза распадается на две молекулы фосфоглицери- нового альдегида (ФГА), который окисляется до фосфоглицериновой кислоты (ФГК). Акцептором водорода и электронов в этой реакции служит НАД. Окисление сопровождается перераспределением внутримолекулярной энергии, образованием макроэргической связи и переносом ее на АДФ с образованием АТФ. Вторым пунктом образования АТФ является реакция дегидратации фосфоглицериновой кислоты до фосфо- енолпировиноградной кислоты (ФЕП).

Рис. 1.16. Схема реакций гликолиза:

1 — гексокиназа; 2 — фосфоглюкоизомераза; 3 — фосфофруктокиназа; 4 — альдолаза; 5 — глицеральдегид-3-фосфатдегидрогеназа; 6 — фосфоглицераткиназа; 7 — фосфоглицератмутаза; 8 — енолаза; 9 — пируваткиназа

Таким образом, энергетический выход анаэробной стадии дыхания составляет 2НАДН и 2АТФ. Кроме того, здесь образуются промежуточные продукты, необходимые для биосинтезов глицерина — компонента жиров, лигнина, фенольных соединений.

Аэробная стадия дыхания происходит в митохондриях и состоит из трех этапов: окислительного декарбоксилирования пировиноград- ной кислоты, цикла Кребса и электронно-транспортной цепи, в которой происходит синтез АТФ.

Продуктом окислительного декарбоксилирования пировиноградной кислоты является ацетильный остаток, соединенный макроэргической тиоловой связью с коферментом А, — ацетил S КоА. Ацетильный остаток окисляется в цикле Кребса до С02 энергия окисления запасается в восстановительных коферментах (ЗНАДН и ФАДН2). Здесь же образуется одна молекула АТФ. Эти реакции локализованы в матриксе митохондрий. Образующиеся кетокислоты (а-кетоглютаровая и а-щавелеуксусная) могут быть использованы в биосинтезе аминокислот (рис. 1.17).

Рис. 1.17. Цикл Кребса

В реакциях цикла Кребса кислород не участвует. Потребность в кислороде возникает для окисления восстановленных переносчиков водорода НАДН и ФАДН2, в которых заключена значительная энергия окисленных веществ (рис. 1.18). Процесс высвобождения энергии заключается в передаче электронов от НАДН и ФАДН2 по электроннотранспортной цепи (ЭТЦ) на активированный кислород. Участником этой ЭТЦ является цитохромная система. Переносчики электронов в ЭТЦ расположены по мере убывания восстановительности, поэтому транспорт электронов сопровождается высвобождением энергии, которая на определенных участках ЭТЦ запасается в макроэргических связях АТФ. В этом и заключается физиологический смысл транспорта электронов.

Рис. 1.18. Передача энергии по цепи переносчиков электронов в митохондриальной мембране

На каждую молекулу НАДН, передающую свои электроны в ЭТЦ, синтезируется по три молекулы АТФ, на каждую молекулу ФАДН2 — по две молекулы АТФ. Процесс фосфорилирования АДФ с образованием АТФ, сопряженный с транспортом электронов от окисляемого субстрата к 02, получил название окислительного фосфорилирования. Этот процесс является основным источником энергии АТФ в клетке, требующим достаточно сложной структуры как электронно-транспортной цепи, так и самих митохондрий. При неблагоприятных условиях, таких, как засуха, жара, дефицит питания, сложные механизмы сопряжения транспорта электронов с образованием АТФ нарушаются. Синтез АТФ уменьшается, что снижает энергетическую эффективность дыхания. В нормальных физиологических условиях в результате окисления одного моля глюкозы образуется 38 АТФ, что обеспечивает КПД 40 %.

Дыхание растений

Средняя оценка: 4

Всего получено оценок: 1449.

Средняя оценка: 4

Всего получено оценок: 1449.

Дыхание является одним из важных условий жизни растения. Именно в процессе дыхания высвобождается энергия, используемая организмом для жизнедеятельности. Кратко и понятно о дыхании растений расскажем в данной статье.

Что такое дыхание

Каждая клетка нуждается в энергии для жизни. Получение энергии происходит при расщеплении органических веществ в процессе дыхания. Такое расщепление происходит под воздействием кислорода и ещё называется окислением. В результате образуются вода, углекислый газ и свободная энергия.

Необходимая растению энергия содержится в химических связях сложных органических веществ. Изначально это энергия солнца, запасённая растением в процессе фотосинтеза.

Дыхание у растений принципиально не отличается от дыхания животных, или грибов. Какой газ растения выделяют при дыхании, такой же выделяют любые другие организмы. Это углекислый газ.

Известно, что на свету растения выделяют ещё и кислород, но это происходит в результате другого процесса – фотосинтеза.

которые читают вместе с этой

Дыхание идёт круглосуточно, поэтому образование углекислого газа происходит постоянно. Также постоянно в клетки растений для их нормальной жизнедеятельности должен поступать кислород.

Это же справедливо и для растения в целом.

Дыхание растений включает два процесса:

  • клеточное дыхание;
  • газообмен растения с внешней средой.

Клеточное дыхание растений

Дыхательными центрами клетки являются митохондрии. Они есть и у животных.

Именно в этих органоидах происходит окисление органических веществ. Обычно такими веществами являются углеводы, но дыхание может идти и за счёт белков или жиров.

При окислении выделяется энергия. Вода остаётся в клетке, а углекислый газ путём диффузии покидает клетку и может сразу использоваться в фотосинтезе.

Процесс дыхания ступенчатый. Вода и углекислый газ образуются не сразу, а являются конечными продуктами. До этого в ходе многих реакций образуются и вновь распадаются другие вещества.

Газообмен с внешней средой

В отличие от животных растения не имеют специальных органов дыхания. Газообмен осуществляется через специальные структуры в покровных тканях:

  • устьица;
  • чечевички.

Устьица располагаются в кожице листьев и молодых стеблей (эпидерме). Каждое из устьиц имеет замыкающие клетки, способные менять тургор (наполненность водой) и закрывать устьичную щель. Устьичные щели осуществляют газообмен и испарение воды листьями.

Рис. 2. Устьица под микроскопом.

Чечевички – это более крупные, чем устьица, структуры, расположенные в пробке стебля.

Рис. 3. Чечевички на стволе берёзы.

Дыхание и фотосинтез

Между процессами дыхания и фотосинтеза существует связь. Это процессы противоположные и в растении следуют один за другим.

Фотосинтез является способом питания. В ходе этого процесса образуются органические вещества, содержащие энергию, полученную в виде света.

Дыхание – это способ высвобождения энергии, запасённой в питательных веществах.

Дыхание в разных частях растения

Интенсивность дыхания неодинакова в разных органах. Наиболее активно дышат:

  • прорастающие семена;
  • распускающиеся цветы;
  • растущие органы.

Не рекомендуется ставить крупные растения в спальной комнате, поскольку ночью они поглощают большое количество кислорода и выделяют углекислый газ.

Корни также, как и надземные органы, дышат. Для нормального дыхания корней необходимо рыхлить почву.

Что влияет на интенсивность дыхания

Факторами, влияющими на интенсивность дыхания, являются:

  • температура;
  • влажность;
  • содержание кислорода в воздухе.

При усилении любого из этих факторов дыхание становится интенсивнее.

Человек управляет дыханием семян и плодов для сохранения урожая и посевного материала. Для этого в помещениях, где хранятся семена, поддерживается необходимая влажность, температура и обеспечивается приток свежего воздуха.

Что мы узнали?

Изучая в 6 классе данную тему, мы выяснили, что дыхание растений – процесс, обеспечивающий клетки энергией. Кислород также необходим растениям, как углекислый газ. Процесс дыхания и фотосинтеза участвуют одни и те же вещества. При дыхании кислород и органические вещества являются исходными, а вода и углекислый газ – конечными продуктами. При фотосинтезе – наоборот.

Дыхание растений

Что такое дыхание растений?

Дыхание растений представляет собой серию ферментативных реакций, которые позволяют растениям превращать накопленную энергию углеводов, вырабатываемых в процессе фотосинтеза, в форму энергии, которую они могут использовать для ускорения роста и метаболических процессов.

Посредством фотосинтеза растения превращают солнечный свет в потенциальную энергию в виде химических связей углеводных молекул. Однако, чтобы использовать эту накопленную энергию для обеспечения жизненно важных процессов – от роста и размножения до заживления поврежденных структур – растения должны преобразовать ее в пригодную для использования форму. Это преобразование происходит посредством клеточного дыхания, основного биохимического пути, также обнаруженного у животных и других организмов.

Как животные и люди, растения тоже дышат

Растения нуждаются в кислороде для дыхания, которые в свою очередь выделяют углекислый газ. В отличие от животных и людей, растения не имеют каких-либо специализированных структур для газообразного обмена и по сравнению с животными и людьми корни растений, стебли и листья дышат с очень низкой скоростью.

Как происходит дыхание растений?

Все зеленые растения дышат через процесс клеточного дыхания.

Дыхание состоит из сложной серии химических реакций. На первом этапе глюкоза окисляется, и химическая потенциальная энергия ее связей передается химическим потенциальным связям молекулы АТФ (аденозинтрифосфата). Затем молекула АТФ может транспортироваться по всей клетке, где ее накопленная энергия используется для выполнения различных задач внутри клетки. Этот процесс выделяет углекислый газ и воду.

Что происходит в клетках растений при дыхании?

Растения дышат на протяжении всей своей жизни, так как клетка растения требует энергии для своего выживания. Но растения не дышат, как люди и животные, они дышат через процесс, называемый клеточным дыханием.

Клеточное дыхание у растений – это процесс, используемый растениями для преобразования питательных веществ, полученных из почвы, в энергию, которая питает клеточную деятельность растений.

Глюкоза, образующаяся в процессе фотосинтеза, распространяется вокруг растения в виде растворимых сахаров и дает энергию клеткам растения во время дыхания. Первой стадией дыхания является гликолиз, который расщепляет молекулу глюкозы на две меньшие молекулы, называемые пируватом, и выделяет небольшое количество энергии АТФ (аденозинтрифосфат). Эта стадия (анаэробное дыхание) не нуждается в кислороде.

На втором этапе молекулы пирувата реорганизуются и снова сливаются в цикле. В то время как молекулы реорганизуются, образуется углекислый газ, а электроны удаляются и помещаются в систему переноса электронов, которая (как и при фотосинтезе) производит много АТФ для растения, чтобы использовать его для роста и размножения. Эта стадия (аэробное дыхание) действительно нуждается в кислороде.

Результатом клеточного дыхания является то, что растение поглощает глюкозу и кислород, выделяет углекислый газ и воду и выделяет энергию. Растения дышат в любое время дня и ночи, потому что их клетки нуждаются в постоянном источнике энергии, чтобы остаться в живых. Помимо того, что растение используется для выделения энергии посредством дыхания, глюкоза, образующаяся в процессе фотосинтеза, превращается в крахмал, жиры и масла для хранения и используется для производства целлюлозы для роста и регенерации клеточных стенок и белков.

Какие условия необходимы для дыхания растений?

Дыхание состоит из ряда реакций, которые происходят главным образом в митохондриях растительных клеток . В дополнение к типу растений, несколько факторов окружающей среды влияют на скорость дыхания растительной клетки.

Возраст ткани / Стадия жизни

У более молодой ткани частота дыхания выше, чем у более старой. Таким образом, верхушка корня и молодые листья имеют более высокую частоту дыхания, чем более старые корневые сегменты и листья.

Когда семя впервые впитывает воду, частота дыхания клеток быстро возрастает, но выравнивается примерно через 20 минут.

Созревшие плоды вызывают всплеск дыхательной активности, который достигает кульминации, когда плоды достигают максимальной зрелости.

Температура

Частота дыхания в растительной клетке уменьшается при понижении температуры до тех пор, пока дыхание почти или полностью не остановится при низких температурах. Дыхание увеличивается с ростом температуры, пока не будут достигнуты очень высокие температуры, что приведет к ухудшению состояния тканей.

Температура сильно влияет на дыхание для поддержания (гораздо больше, чем клетки, предназначенные для роста растений). У растений в умеренном климате частота дыхания зимой значительно ниже, чем в теплое лето.

Частоту дыхания фруктов можно контролировать, храня фрукты в прохладных, сухих местах. Более низкие температуры хранения могут замедлить дыхание и созревание фруктов.

Кислород

Дыхание замедляется с уменьшением доступного кислорода. В условиях, когда кислорода нет, как, например, в плохо дренируемой почве, происходит анаэробное дыхание (брожение). Анаэробное дыхание приводит к образованию углекислого газа, некоторого количества энергии и этанола. Этот тип дыхания также используется для создания спиртов.

Частота дыхания для большинства растений достигает пика при нормальном уровне кислорода в атмосфере.

Если, например, корни дерева затоплены в течение длительных периодов времени, они не могут поглощать кислород и преобразовывать глюкозу для поддержания клеточных метаболических процессов. В результате заболачивание и чрезмерное орошение могут лишить корни кислорода, убить корневую ткань, повредить деревья и снизить урожайность.

Углекислый газ

Двуокись углерода, один из отходов дыхания, также влияетелен. Чем выше концентрация углекислого газа, тем ниже частота дыхания.

Повреждения

Дыхание усиливается как непосредственно зараженными, так и окружающими клетками, когда ткань растения повреждена или заражена. Часто, когда в яблоке есть червячная дыра, маленький коричневый синяк окружает его – это указывает на усиление дыхания в области вокруг поврежденных клеток.

Недостаток воды

Сухая ткань имеет более низкую частоту дыхания, чем гидратированная. Хотя засуха оказывает гораздо большее влияние на процесс фотосинтеза в растительных клетках, недостаток доступной воды также отрицательно влияет на дыхание.

Доступные сахара

Листья верхнего купола часто видят более высокие частоты дыхания.

Увеличение доступных сахаров в результате фотосинтеза обычно приводит к увеличению частоты дыхания. Частота дыхания в листьях верхнего купола будет выше, чем в листьях нижнего купола, потому что верхушки производят больше сахара.

Процессы, происходящие при дыхании растений

Во время дыхания в разных частях растений происходит очень мало газообмена. Поэтому каждая часть заботится о своих собственных потребностях в энергии.

Корни, стебли и листья растений обмениваются газами для дыхания отдельно. Как мы все знаем, листья имеют крошечные поры, называемые устьицами, которые используются для обмена газов. Кислород, всасываемый через устьицы, используется клетками в листьях для расщепления глюкозы на углекислый газ и воду.

Дыхание в корнях

Корни, подземная часть растений поглощает воздух из воздушных пространств, присутствующих между частицами почвы. Таким образом, кислород, поглощаемый через корни, используется для высвобождения энергии, которая впоследствии используется для транспортировки минералов и солей из почвы.

Дыхание в стеблях

В случае стебля воздух рассеивается в устьицах и проходит через различные части клетки для дыхания. Диоксид углерода, образующийся на этой стадии, также диффундирует через устьица. У высших или древесных растений газообразный обмен осуществляется чечевицами.

Дыхание в листьях

Листья содержат крошечные поры, называемые устьицами. Обмен газов происходит через устьица в процессе диффузии. Каждая стома контролируется ячейками охраны. Открытие и закрытие стомы помогают в обмене газами между атмосферой и внутренней частью листьев.

Связь дыхания и фотосинтеза

Все организмы, животные и растения должны получать энергию для поддержания основных биологических функций для выживания и размножения. Растения преобразуют энергию солнечного света в сахар в процессе, называемом фотосинтезом. Фотосинтез использует энергию света для преобразования молекул воды и углекислого газа в глюкозу (молекулу сахара) и кислород. Кислород высвобождается или «выдыхается» из листьев, в то время как энергия, содержащаяся в молекулах глюкозы, используется во всем растении для роста, формирования цветов и развития плодов.

Внутри листа есть несколько структур, которые играют важную роль в движении питательных веществ и воды по всему растению.

Листья содержат воду, которая необходима для преобразования световой энергии в глюкозу посредством фотосинтеза. Листья имеют две структуры, которые сводят к минимуму потерю воды, кутикулу и устьица. Кутикулы являются восковым покрытием на верхнюю и нижнюю часть листьев, которые предотвращают испарение воды в атмосферу.

Хотя кутикула обеспечивает важную защиту от чрезмерной потери воды, листья не могут быть непроницаемыми, поскольку они также должны пропускать углекислый газ (для использования при фотосинтезе) и кислород. Эти газы попадают в лист и выходят из него через отверстия на нижней стороне, называемые устьицами. После того, как углекислый газ попадает в лист через устьицы, он попадает в клетки мезофилла, где происходит фотосинтез и строится глюкоза.

Связь между фотосинтезом и клеточным дыханием такова, что продукты одной системы являются реагентами другой. Фотосинтез включает использование энергии солнечного света, воды и углекислого газа для производства глюкозы и кислорода. Клеточное дыхание использует глюкозу и кислород для производства углекислого газа и воды.

Люди, животные и растения зависят от цикла клеточного дыхания и фотосинтеза для выживания. Кислород, вырабатываемый растениями во время фотосинтеза, – это то, что люди и животные вдыхают, чтобы кровь транспортировалась в клетки для дыхания. Углекислый газ, образующийся во время дыхания, выделяется из организма и поглощается растениями, чтобы помочь обеспечить энергию, необходимую для роста и развития. Это бесконечный цикл, который поддерживает жизнь на земле.

Процесс фотосинтеза используется растениями и другими фотосинтезирующими организмами для производства энергии, тогда как процесс клеточного дыхания расщепляет энергию для использования. Несмотря на различия между этими двумя процессами, есть некоторые сходства.

Например, оба процесса синтезируют и используют АТФ, универсальную энергию.

  • В процессе фотосинтеза АТФ производится с помощью энергии света (фотофосфорилирования) и используется для создания органических молекул
  • При клеточном дыхании АТФ образуется путем расщепления органических молекул (окислительное фосфорилирование)

Относительные скорости фотосинтеза, которые производят молекулы газа и дыхания, влияют на общую продуктивность растений. Там, где активность фотосинтеза превышает дыхание, рост растений протекает на высоком уровне. Там, где дыхание превышает фотосинтез, рост замедляется.

И фотосинтез, и дыхание увеличиваются с повышением температуры, но в определенный момент скорость фотосинтеза выравнивается, в то время как частота дыхания продолжает расти. Это может привести к истощению накопленной энергии. Чистая первичная продуктивность – количество биомассы, созданной зелеными растениями. Она может использоваться для остальной части пищевой цепи – представляет собой баланс фотосинтеза и дыхания, рассчитанный путем вычитания энергии, потерянной для дыхания, из общей химической энергии, производимой фотосинтезом.

Значение дыхания в жизни растений

Растения дышат, но они преимущественно участвуют в процессе, называемом фотосинтезом. Это совпадает с характеристиками дыхания, за исключением соответствующих химических реакций, протекающих в обратном направлении.

Поскольку дыхание и фотосинтез дополняют друг друга во всех экосистемах планеты, дыхание имеет такое же жизненно важное значение для растений, как и для организмов, которые напрямую зависят от дыхания.

Углекислый газ является фактором для фотосинтеза. Животные вдыхают кислород и выдыхают углекислый газ. Растения потребляют углекислый газ и выдыхают кислород.

Таким образом, животные дают растениям углекислый газ, тогда как растения дают животному кислород.

Существует равновесие между кислородом и углекислым газом между животными и растениями. Без одного другой не выживет долго.

Чем дышат растения и как дышат растения

Дыхание — это цепь химических реакций, которая позволяет всем живым существам синтезировать энергию, необходимую для поддержания жизнедеятельности. Чем дышат растения и как дышат растения — об этом читайте ниже.

Это биохимический процесс, при котором воздух перемещается между внешней средой и тканями и клетками вида. При дыхании происходит вдыхание кислорода и выдох углекислого газа. Поскольку сущность получает энергию за счет окисления питательных веществ и, следовательно, высвобождения отходов, это называется метаболическим процессом.

Давайте взглянем на дыхание растений, чтобы узнать о процессе дыхания и о различных типах дыхания, которые происходят у растений.

  1. Дышают ли растения ?
  2. Процесс дыхания у растений
  3. Дыхание в корнях
  4. Дыхание в стеблях
  5. Дыхание в листьях
  6. Различия между дыханием растений и фотосинтезом
  7. Типы дыхания
  8. Аэробное дыхание
  9. Анаэробное дыхание
  10. Как растения дышат ?
  11. Дышат ли растения ночью ?
  12. Назовите дыхательный орган в древесных стеблях ?
  13. Какова роль устьиц в дыхании растений ?
  14. Какая часть корней участвует в обмене дыхательных газов ?

Дышают ли растения ?

Да, как животные и люди, растения тоже дышат.

Растения действительно нуждаются в кислороде, чтобы дышать, в ответ на это выделяется углекислый газ. В отличие от людей и животных, растения не обладают какими-либо специализированными структурами для обмена газов, однако они обладают устьицами (обнаруженными в листьях) и чечевичками (обнаруженными в стеблях), активно участвующими в газообмене. Листья, стебли и корни растений дышат медленнее, чем люди и животные.

Дыхание отличается от дыхания. И животные, и люди дышат, что является одной из ступеней дыхания. Растения участвуют в дыхании на протяжении всей своей жизни, так как растительной клетке нужна энергия для выживания, однако растения дышат иначе, благодаря процессу, известному как клеточное дыхание.

В процессе клеточного дыхания растения производят молекулы глюкозы посредством фотосинтеза, улавливая энергию солнечного света и превращая ее в глюкозу. Несколько живых экспериментов демонстрируют дыхание растений. Все растения дышат, чтобы обеспечить энергией свои клетки, чтобы они были активными или живыми.

Дыхание растений

Давайте посмотрим на дыхательный процесс у растений.

Процесс дыхания у растений

Во время дыхания в разных частях растения происходит значительно меньший газообмен. Следовательно, каждая часть питает и удовлетворяет свои собственные потребности в энергии.

Следовательно, листья, стебли и корни растений обмениваются газами по отдельности. Листья обладают устьицами — крошечными порами, предназначенными для газообмена. Кислород, потребляемый через устьица, используется клетками листьев для разложения глюкозы на воду и углекислый газ.

Дыхание в корнях

Корни, подземная часть растений, впитывают воздух из воздушных зазоров / промежутков между частицами почвы. Следовательно, кислород, поглощенный корнями, используется для высвобождения энергии, которая в будущем будет использоваться для транспортировки солей и минералов из почвы.

Мы знаем, что растения обладают особой способностью синтезировать собственную пищу посредством фотосинтеза. Фотосинтез происходит только в тех частях растений, которые имеют хлорофилл — зеленых частях растений. Фотосинтез настолько очевиден, что иногда кажется, что он маскирует дыхательный процесс у растений. Дыхание не следует принимать за фотосинтез. Дыхание происходит в течение всего дня, но процесс фотосинтеза происходит днем, только при наличии солнечного света. Следовательно, дыхание растений становится очевидным в ночное время.

Это причина, по которой мы часто слышим, как люди предостерегают от сна под деревом в ночное время, поскольку это может привести к удушью из-за избыточного количества углекислого газа, выделяемого деревьями после дыхания.

Дыхание в стеблях

Воздух в случае стебля диффундирует в устьица и проходит через разные части клетки, чтобы дышать. На этом этапе высвободившийся диоксид углерода также распространяется через устьица. Известно, что чечевички осуществляют газообмен у древесных или высших растений.

Дыхание в листьях

Листья состоят из крошечных пор, известных как устьица. Газообмен происходит путем диффузии через устьица. Сторожевые клетки регулируют каждую из устьиц. Обмен газов происходит при закрытии и открытии устьиц между нижним листом и атмосферой.

Устьица

Различия между дыханием растений и фотосинтезом

Разница между дыханием растений показана в таблице.

ФотосинтезДыхание
Этот процесс характерен для всех зеленых растений, содержащих пигменты хлорофилла.Этот процесс характерен для всех живых существ, включая растения, животных, птиц и т. д.
Пища синтезируется.Пища окисляется.
Энергия сохраняется.Высвобождается энергия.
Это анаболический процесс.Это катаболический процесс.
Требуется цитохром.Здесь тоже нужен цитохром
Это эндотермический процесс.Это экзотермический процесс.
В его состав входят такие продукты, как вода, кислород и сахар.В его состав входят такие продукты, как диоксид углерода и водород.
Возникает в дневное время только при наличии солнечного света.Это непрерывный процесс, происходящий на протяжении всей жизни

Типы дыхания

Есть два основных типа дыхания.

Аэробное дыхание

Этот тип дыхания имеет место в митохондриях всех эукариотических организмов. F молекулы полностью окисляются в двуокись углерода, воду, и энергия высвобождается в присутствии кислорода. Этот тип дыхания наблюдается у всех высших организмов и требует атмосферного кислорода.

Анаэробное дыхание

Этот тип дыхания происходит в цитоплазме прокариотических образований, таких как дрожжи и бактерии. Здесь меньше энергии высвобождается в результате неполного окисления пищи в отсутствие кислорода. Этиловый спирт и диоксид углерода образуются во время анаэробного дыхания.

Как растения дышат ?

Все зеленые растения дышат посредством клеточного дыхания. В этом процессе питательные вещества, полученные из почвы, превращаются в энергию и используются для различных клеточных действий.

Дышат ли растения ночью ?

Да, растения дышат на протяжении всей своей жизни как днем, так и ночью. Химическое уравнение клеточного дыхания выражается как кислород + глюкоза -> углекислый газ + вода + тепловая энергия.

Назовите дыхательный орган в древесных стеблях ?

У твердых и древесных стеблей дыхание или газообмен происходит через чечевички. Это маленькие поры, разбросанные по всей коре и встречающиеся на всех деревьях.

Чечевички

Какова роль устьиц в дыхании растений ?

Устьица — это крошечные поры, расположенные на эпидермисе листьев, стеблей и других органов. Во время клеточного дыхания устьица способствуют газообмену, открывая и закрывая поры.

Строение устьиц

Какая часть корней участвует в обмене дыхательных газов ?

Корневые волоски, трубчатые отростки эпидермиса, участвуют в обмене дыхательных газов.

Дыхание растений

Дополнительная литература по теме:

В.Л. Кретович “Основы биохимии растений”. М, 1971,А. Ленинджер “Биохимия” М., 1974,Я. Мусил, О. Новакова, К. Кунц “Современная биохимия в схемах”.М., 1981.

Общая характеристика дыхания.

Цепь дыхательных ферментов.

Строение и функции митохондрии и дыхательных ферментов. Энергетика процесса дыхания.

Влияние условий окружающей среды на дыхание растений.

Регулирование дыхания сельскохозяйственных продуктов при хранении.

Общая характеристика дыхания

Дыхание занимает исключительное положение среди других физиологических процессов. Окислительное дыхание свойственно всем многоклеточным живым организмам, как растительным, так и животным. Ряд видов прокариот также ведут этот процесс. Поэтому основные этапы дыхания являются одинаковыми для всех живых организмов, получающих энергию с помощью этого способа.

Дыхание является ключевым процессом метаболизма любого организма по двум причинам: при дыхании происходит освобождение химической энергии органических веществ, используемых в качестве дыхательного материала. Экзотермические реакции дыхательного процесса непосредственно связаны с эндотермическими процессами клеточного обмена и служат для них источником энергии. Таким образом, дыхание обеспечивает возможность течения эндотермических реакций обмена, процессов образования структур и осуществления движений, что требует затрат энергии, при дыхании протекают такие химические превращения, в результате которых образуются высокоактивные соединения, обладающие большой реактивной способностью и играющие исключительную роль в обмене веществ в организме.

Итоговое уравнение дыхания:

С6Н12О6 + 6 О2 = 6 СО2 +: 6Н2О + 686 ккал (2867 кДж)

Дыхание обеспечивает организм энергией, необходимой для поддержания процессов, протекающих с ее затратой и высокоактивными веществами, принимающими участие в клеточном обмене.

Подавляющее большинство живых организмов для поддержания своей жизни используют ту энергию, которая освобождается во время диссимиляции органических веществ, в первую очередь углеводов, образовавшихся в процессе фотосинтеза и являющихся по образному выражения К.А. Тимирязева, как бы “консервом” энергии солнечных лучей.

Остановка или значительное замедление дыхания вызывает остановку или глубокие изменения в ходе всех жизненных процессов организма.

В клетке непрерывно происходят различные процессы, направленные на биосинтез веществ, поддержание осмотического и электрического потенциалов, осуществление механических движений как клетки, так и ее отдельных органоидов. Все эти процессы идут с использованием свободной энергии, т.е. являются эндотермическими реакциями, а свободная энергия в клетке образуется только в результате преобразования высокомолекулярных соединений (например, АТФ) в более низкомолекулярные соединения (например, АДФ), и при этом выделяется определенная часть энергии. В процессе дыхания как раз и происходит на многих этапах осуществление процесса дефосфорилирования (АТФ = АДФ + Ф), что и определяет выделение энергии.

Дыхание состоит из трех основных этапов:

гликолиза (разложения субстрата (углеводов, жиров, аминокислот) до пировиноградной кислоты),

цикла Кребса (разложения пировиноградной кислоты до СО2 и Н + ),

цепи дыхательных ферментов (по ним переносятся ионы Н + на акцептор О2 и образуется Н2О).

При этом гликолиз и цикл Кребса являются стадиями анаэробными, а кислород включается в процесс уже на последнем этапе процесса. Гликолиз происходит в цитоплазме, а цикл Кребса и перенос по цепи дыхательных ферментов осуществляются в митохондрии.

Что такое и как происходит дыхание растений?

Что такое дыхание.

Каждая клетка нуждается в энергии для жизни. Получение энергии происходит при расщеплении органических веществ в процессе дыхания. Такое расщепление происходит под воздействием кислорода и ещё называется окислением. В результате образуются вода, углекислый газ и свободная энергия.

Необходимая растению энергия содержится в химических связях сложных органических веществ. Изначально это энергия солнца, запасённая растением в процессе фотосинтеза.

Дыхание у растений принципиально не отличается от дыхания животных, или грибов. Какой газ растения выделяют при дыхании, такой же выделяют любые другие организмы. Это углекислый газ.

Рис. 1. Схема дыхания растений.

Известно, что на свету растения выделяют ещё и кислород, но это происходит в результате другого процесса – фотосинтеза.

Дыхание идёт круглосуточно, поэтому образование углекислого газа происходит постоянно. Также постоянно в клетки растений для их нормальной жизнедеятельности должен поступать кислород.

Это же справедливо и для растения в целом.

Дыхание растений включает два процесса:

  • клеточное дыхание;
  • газообмен растения с внешней средой.

Клеточное дыхание растений.

Дыхательными центрами клетки являются митохондрии. Они есть и у животных.

Именно в этих органоидах происходит окисление органических веществ. Обычно такими веществами являются углеводы, но дыхание может идти и за счёт белков или жиров.

При окислении выделяется энергия. Вода остаётся в клетке, а углекислый газ путём диффузии покидает клетку и может сразу использоваться в фотосинтезе.

Процесс дыхания ступенчатый. Вода и углекислый газ образуются не сразу, а являются конечными продуктами. До этого в ходе многих реакций образуются и вновь распадаются другие вещества.

Газообмен с внешней средой.

В отличие от животных растения не имеют специальных органов дыхания. Газообмен осуществляется через специальные структуры в покровных тканях:

  • устьица;
  • чечевички.

Устьица располагаются в кожице листьев и молодых стеблей (эпидерме). Каждое из устьиц имеет замыкающие клетки, способные менять тургор (наполненность водой) и закрывать устьичную щель. Устьичные щели осуществляют газообмен и испарение воды листьями.

Рис. 2. Устьица под микроскопом.

Чечевички – это более крупные, чем устьица, структуры, расположенные в пробке стебля.

Рис. 3. Чечевички на стволе берёзы.

Дыхание и фотосинтез.

Между процессами дыхания и фотосинтеза существует связь. Это процессы противоположные и в растении следуют один за другим.

Фотосинтез является способом питания. В ходе этого процесса образуются органические вещества, содержащие энергию, полученную в виде света.

Дыхание – это способ высвобождения энергии, запасённой в питательных веществах.

Дыхание в разных частях растения.

Интенсивность дыхания не одинакова в разных органах. Наиболее активно дышат:

  • прорастающие семена;
  • распускающиеся цветы;
  • растущие органы.

Не рекомендуется ставить срезанные цветы в спальной комнате, поскольку они поглощают большое количество кислорода и выделяют углекислый газ.

Корни также, как и надземные органы, дышат. Для нормального дыхания корней необходимо рыхлить почву.

Какие условия необходимы для дыхания растений?

Дыхание состоит из ряда реакций, которые происходят главным образом в митохондриях растительных клеток . В дополнение к типу растений, несколько факторов окружающей среды влияют на скорость дыхания растительной клетки.

Возраст ткани / Стадия жизни.

У более молодой ткани частота дыхания выше, чем у более старой. Таким образом, верхушка корня и молодые листья имеют более высокую частоту дыхания, чем более старые корневые сегменты и листья.

Когда семя впервые впитывает воду, частота дыхания клеток быстро возрастает, но выравнивается примерно через 20 минут.

Созревшие плоды вызывают всплеск дыхательной активности, который достигает кульминации, когда плоды достигают максимальной зрелости.

Частота дыхания в растительной клетке уменьшается при понижении температуры до тех пор, пока дыхание почти или полностью не остановится при низких температурах. Дыхание увеличивается с ростом температуры, пока не будут достигнуты очень высокие температуры, что приведет к ухудшению состояния тканей.

Температура сильно влияет на дыхание для поддержания (гораздо больше, чем клетки, предназначенные для роста растений). У растений в умеренном климате частота дыхания зимой значительно ниже, чем в теплое лето.

Частоту дыхания фруктов можно контролировать, храня фрукты в прохладных, сухих местах. Более низкие температуры хранения могут замедлить дыхание и созревание фруктов.

Дыхание замедляется с уменьшением доступного кислорода. В условиях, когда кислорода нет, как, например, в плохо дренируемой почве, происходит анаэробное дыхание (брожение). Анаэробное дыхание приводит к образованию углекислого газа, некоторого количества энергии и этанола. Этот тип дыхания также используется для создания спиртов.

Частота дыхания для большинства растений достигает пика при нормальном уровне кислорода в атмосфере.

Если, например, корни дерева затоплены в течение длительных периодов времени, они не могут поглощать кислород и преобразовывать глюкозу для поддержания клеточных метаболических процессов. В результате заболачивание и чрезмерное орошение могут лишить корни кислорода, убить корневую ткань, повредить деревья и снизить урожайность.

Двуокись углерода, один из отходов дыхания, также влияетелен. Чем выше концентрация углекислого газа, тем ниже частота дыхания.

Дыхание усиливается как непосредственно зараженными, так и окружающими клетками, когда ткань растения повреждена или заражена. Часто, когда в яблоке есть червячная дыра, маленький коричневый синяк окружает его — это указывает на усиление дыхания в области вокруг поврежденных клеток.

Сухая ткань имеет более низкую частоту дыхания, чем гидратированная. Хотя засуха оказывает гораздо большее влияние на процесс фотосинтеза в растительных клетках, недостаток доступной воды также отрицательно влияет на дыхание.

Листья верхнего купола часто видят более высокие частоты дыхания.

Увеличение доступных сахаров в результате фотосинтеза обычно приводит к увеличению частоты дыхания. Частота дыхания в листьях верхнего купола будет выше, чем в листьях нижнего купола, потому что верхушки производят больше сахара.

Что влияет на интенсивность дыхания.

Факторами, влияющими на интенсивность дыхания, являются:

  • температура;
  • влажность;
  • содержание кислорода в воздухе.

При усилении любого из этих факторов дыхание становится интенсивнее.

Человек управляет дыханием семян и плодов для сохранения урожая и посевного материала. Для этого в помещениях, где хранятся семена, поддерживается необходимая влажность, температура и обеспечивается приток свежего воздуха.

Дневное дыхание растений.

Дневное дыхание связано с двумя процессами: непосредственно дыханием и фотосинтезом. Процесс дыхания, как и у человека, связан с окислением органических соединений и выделением диоксида углерода, воды и энергии. Вместо человеческих легких выступает вся поверхность растения. Химическая формула, описывающая реакции в процессе дыхания растений:

«В веганском мясе обнаружено слишком много соли» — а что насчёт невеганского?

C6H12O6 + 6O2 → 6CO2 + 6H2O + 674 ккал.

Любое дерево способно дышать всей поверхностью, даже поверхностью плодов. Но наиболее активно процесс дыхания происходит через устья листа, откуда и попадает по межклеточному пространству большая часть необходимых газов.

Если речь идет о дневном времени суток, то дыхание не столь заметно, как ночью. Поскольку работа растения направлена большей частью на постоянное запасание энергии в виде органических соединений (глюкозы). Попадающий в листья газ, при содействии воды и энергии солнечного света в хлоропластах превращается в глюкозу, которую организм запасает для дальнейшего использования. Собственно дыхание и является этим дальнейшим использованием.

Запасенная глюкоза, с помощью воды и кислорода разлагается на молекулы аденозинтрифосфорной кислоты (АТФ), углекислый газ и водород. АТФ – это твердая энергия. Биологический аккумулятор клеток, который обеспечивает энергетическими запасами все живое на планете. Позднее эти запасы будут использованы в жизнедеятельности каждой молекулы организма.

Кажется, что образуется замкнутый круг: фотосинтез происходит с образованием глюкозы и кислорода, но что толку, если потом в результате дыхания растений выделяется диоксид углерода и АТФ. А энергию растения расходуют лично на себя, ничего не оставляя другим. Но весь вопрос в количестве. Далеко не весь кислород, который образуется во время фотосинтеза, поглощается организмом во время дыхания. Растения производят в разы больше, чем поглощают. Может этим они и отличаются от человека. А все энергетические запасы растений рано или поздно переходят в запасы животных или человека. Так растения отдают все свои накопления ради существования экосистемы Земли.

В среднем 1 гектар лесов ежегодно выделяет 4 тонны кислорода и потребляет 5 тонн углекислого газа. Человек в день выдыхает до 1 килограмма диоксида углерода, в год — 365 кг. Следовательно, 1 гектар леса поглощает углекислоту, которую выдыхают 13 человек.

С увеличением процента содержания углекислого газа в атмосфере теоретически можно ускорить рост зеленых насаждений на Земле. Многие исследования показывают, что в условиях теплиц СО2 можно использовать как «воздушное удобрение», ведь иногда при дыхании кислородом растениями поглощается еще и углекислый газ. Но так происходит это только в условиях экспериментов. На открытых пространствах начавшийся рост активизирует насекомых, которые не позволяют лесам и джунглям разрастись. А культурные растения от таких добавок превращаются в легкую добычу для вредителей. Поэтому, чтобы не говорили скептики, нарушение обмена углеродом это плохо.

Ночное дыхание растений.

Процесс дыхания растений мало чем отличается от дыхания животных и человека. Есть и ночное дыхание. Это явление было открыто Отто Варбургом в начале XX века. Ночью света нет, а значит нет и энергии для фотосинтеза. Растения перестают вырабатывать O2, но не могут перестать дышать. Кислород поглощается, а углекислый газ все так же продолжает выделяться.

Белки, жиры и углеводы, запасенные в процессе жизнедеятельности днем, благодаря циклу Кресса превращаются в углекислый газ, молекулы АТФ и водород.

C6H12O6 + 6H2O → 6CO2 + 4ATФ +12H2

АТФ расходуются на дальнейшие нужды, углекислый газ уходит в атмосферу по устьицам, а вот водород окисляется до воды. Растение не может позволить себе сбрасывать водород в атмосферу, поскольку легко может погибнуть от этого, поэтому происходит частичный выброс паров воды. Большая часть организма растения – вода. Она нужна во всех процессах, включая дневное и ночное дыхание. Окисленный водород будет использован вновь в следующих реакциях.

Именно из-за ночного дыхания не рекомендуется ставить цветы в спальнях. Это увеличивает содержание углекислоты в комнате. Что никак не скажется на цветах, но будет чувствительно для человека.

Для дыхания растений существует пороговое значение содержания кислорода. При увеличении содержания О2 в воздухе до 5-8 процентов – интенсивность дыхания у растений скачкообразно растет. Но после это рост практически прекращается. Сейчас кислорода в воздухе около 21 процента. А значит, растениям еще долго не нужно будет о нем беспокоиться.

В природе есть еще одно интересное явление, названное САМ — фотосинтезом. Это явление характерно для пустынных цветов и растений. В вечной погоне за сохранением водных ресурсов, эти растения приспособились к проведению фотосинтеза в ночь.

Водоросли и CO2.

Под водорослями понимают все растения, находящиеся под водой и не имеющие корня. Интенсивнее всего, из водорослей, поглощает углекислоту одноклеточные водоросли — фитопланктон. В основном все водоросли дышат растворенным в воде кислородом, за исключением нескольких видов, осуществляющих бескислородный фотосинтез. Те в качестве акцептора электронов при дыхании используют элементную серу.


Получение энергии в группе цианобактерий.

Фитопланктон обитает в верхних слоях воды, поскольку ему требуется большое количество солнечной энергии для фотосинтеза. При наличии в воде растворенного углекислого газа фитопланктон осуществляет фотосинтезирующий процесс, побочным продуктом которого является кислород. Большим отличием этих водорослей от наземных растений является количество производимого кислорода. За один цикл фотосинтеза фитопланктон производит кислорода в 3-4 раза больше собственного веса. Неудивительно, что при таких показателях 70 процентов атмосферного кислорода произведено в воде.

Значение дыхания в жизни растений.

Растения дышат, но они преимущественно участвуют в процессе, называемом фотосинтезом. Это совпадает с характеристиками дыхания, за исключением соответствующих химических реакций, протекающих в обратном направлении.

Поскольку дыхание и фотосинтез дополняют друг друга во всех экосистемах планеты, дыхание имеет такое же жизненно важное значение для растений, как и для организмов, которые напрямую зависят от дыхания.

Углекислый газ является фактором для фотосинтеза. Животные вдыхают кислород и выдыхают углекислый газ. Растения потребляют углекислый газ и выдыхают кислород.

Таким образом, животные дают растениям углекислый газ, тогда как растения дают животному кислород.

Существует равновесие между кислородом и углекислым газом между животными и растениями. Без одного другой не выживет долго.

Ссылка на основную публикацию